Application des biotechnologies agricoles
En Afrique de l’Ouest et du centre
(résultats de l’étude 2002)

Walter S. Alhassan

CORAF/WECARD–IITA scientifique invité
(grâce une subvention de
de l’Agence des Etats-Unis pour le
développement international [USAID])

Institut International d’Agriculture Tropicale.
Remerciements

J’exprime ma reconnaissance à la direction du Conseil Quest et du Centre Africain pour la Recherche et le Développement Agricole (West and Central African Council for Agricultural Research and Development (CORAF/WECARD) pour m’avoir donné la possibilité d’entreprendre cette étude de fond très utile au sujet de l’aide à la création de compétences dans le domaine de la biotechnologie pour la sous-région d’Afrique de l’Ouest et du centre. J’adresse des remerciements spéciaux à l’Agence américaine pour le Développement International (USAID) qui a financé cette étude et pour ses engagements dans la construction de compétences en biotechnologie pour l’Afrique sub-saharienne. Nous souhaitons que ce rapport aide l’USAID et des autres partenaires du développement à déterminer le soutien nécessaire pour cette sous-région.

Je suis très reconnaissant à l’Institut International d’Agriculture Tropicale (IITA), Ibadan, Nigeria de m’avoir accueilli, donné des conseils et soutenu en général. Une mention spéciale va au Dr Peter Hartmann, directeur général, au Dr Rodomiro Ortiz, sous-directeur général suppléant (Recherche pour le développement) et au Dr Robert Asiedu, tous de l’IITA, pour leurs encouragements. Le Dr Rodomiro Ortiz ainsi que les Drs Christian Fatokun et Ivan Inglebrecht méritent une mention pour leurs commentaires très utiles qui ont amélioré la substance de ce rapport. Je suis cependant responsable de toutes les erreurs de ce rapport.

Walter Sandow Alhassan, PhD
Scientifique invité
Octobre 2002
Sommaire
Remerciements .. iii
Résumé ... vii
Introduction ... 1
Méthodologie.. 6
Observations ... 7
Observations pays par pays .. 7
Burkina Faso... 7
Cameroun ... 14
Côte d’Ivoire... 20
Ghana.. 24
Mali .. 31
Nigeria... 39
Sénégal ... 46
Grands enjeux généraux de la biologie en Afrique de l’Ouest et du centre.............. 54
Propriété intellectuelle et compétences pour l’évaluation d’impact au NARS 54
Contraintes auxquelles la recherche en biotechnologie est exposée dans les NARS
de la sous-région... 54
Information des NARS en Afrique de l’Ouest et du centre concernant les activités
du CORAF/WECARD ... 55
Politique pour la biologie et implication nationale pour la biotechnologie et la bio-
sécurité.. 57
Information du public sur les biotechnologies et les questions de bio-sécurité.... 61
Centres internationaux de recherche agricole et agences de promotion de la
science en biotechnologie en Afrique de l’Ouest et du centre 65
Nouvelles institutions qui soutiennent le CORAF/WECARD dans le domaine des
biotechnologies... 76
Lacunes et perspectives pour l’intervention de la biotechnologie en Afrique de
l’Ouest et du centre... 77
Leçons du processus de développement d’un cadre régional de biotechnologie et de
bio-sécurité fait par l’ASARECA .. 82
Cadre sous-régional pour les biotechnologies et la bio-sécurité en Afrique de l’Ouest
et du centre ... 86
Le groupe de travail du CORAF et l’atelier de travail des partenaires 93
Références .. 99
Acronymes et abréviations ... 100
Annexes .. 105
Annexe 1. Questionnaires utilisés dans l’étude détaillée 105
Annexe 2. Personnes de contact par pays pour l’étude détaillée des
biotechnologies... 112
complémentaires sur les résultats ... 117
Tableaux

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pays membres du CORAF/WECARD</td>
</tr>
<tr>
<td>2.</td>
<td>Proportion de laboratoires en état de fonction dans des NARS sélectionnés en Afrique de l’Ouest et du centre</td>
</tr>
<tr>
<td>3.</td>
<td>Main d’œuvre disponible pour la biotechnologie et la bio-sécurité dans les NARS de l’Afrique de l’Ouest et du centre</td>
</tr>
<tr>
<td>4.</td>
<td>Projets de recherche en biotechnologie végétale au Burkina Faso</td>
</tr>
<tr>
<td>5.</td>
<td>Projet de recherche en biotechnologie animale au Burkina Faso</td>
</tr>
<tr>
<td>6.</td>
<td>Projets de recherche en biotechnologie végétale au Cameroun</td>
</tr>
<tr>
<td>7.</td>
<td>Projets de recherche en biotechnologie au Cameroun</td>
</tr>
<tr>
<td>8.</td>
<td>Projets de biotechnologie sur les plantes en Côte d’Ivoire</td>
</tr>
<tr>
<td>9.</td>
<td>Projets de recherche en biotechnologie végétale au Ghana</td>
</tr>
<tr>
<td>10.</td>
<td>Projets de recherche en biotechnologie animale au Ghana</td>
</tr>
<tr>
<td>11.</td>
<td>Projets de recherche en biotechnologie végétale au Mali</td>
</tr>
<tr>
<td>12.</td>
<td>Projets de recherche en biotechnologie animale au Mali</td>
</tr>
<tr>
<td>13.</td>
<td>Projets de biotechnologie végétale au Nigeria</td>
</tr>
<tr>
<td>14.</td>
<td>Projets de biotechnologie animale au Nigeria</td>
</tr>
<tr>
<td>15.</td>
<td>Projets de recherche en biotechnologie végétale au Sénégal</td>
</tr>
<tr>
<td>16.</td>
<td>Projets de recherche en biotechnologie animale au Sénégal</td>
</tr>
<tr>
<td>17.</td>
<td>Compétences en propriété intellectuelle et évaluation des impacts des NARS en Afrique de l’Ouest et du centre</td>
</tr>
<tr>
<td>18.</td>
<td>Contraintes de développement des biotechnologies que rencontre l’Afrique de l’Ouest et du centre selon le point de vue du NARS</td>
</tr>
<tr>
<td>19.</td>
<td>Information sous-régionale au sujet des activités du CORAF/WECARD par les NARS de l’Afrique de l’Ouest et du centre</td>
</tr>
<tr>
<td>20.</td>
<td>Niveau d’implication du gouvernement dans le domaine de la biotechnologie en Afrique de l’Ouest et du centre</td>
</tr>
<tr>
<td>22.</td>
<td>Caractéristiques des maisons des médias étudiées en détail en Afrique de l’Ouest et du centre</td>
</tr>
<tr>
<td>23.</td>
<td>Réactions des ONG aux problèmes de la biotechnologie et de la bio-sécurité en Afrique de l’Ouest et du centre</td>
</tr>
<tr>
<td>24.</td>
<td>intérêt des médias au sujet de la biotechnologie et les disciplines proches en Afrique de l’Ouest et du centre</td>
</tr>
<tr>
<td>25.</td>
<td>Fréquence des reportages sur la science et l’agriculture en Afrique de l’Ouest et du centre</td>
</tr>
<tr>
<td>26.</td>
<td>Outils agro-biotechnologiques de l’IITA chez sept plantes cultivées</td>
</tr>
<tr>
<td>27.</td>
<td>Activités dans le domaine des biotechnologies de l’USAID en Afrique</td>
</tr>
</tbody>
</table>
Résumé

L’étude ci-dessous prépare le terrain pour une étude ultérieure, en profondeur sur les capacités de l’application des biotechnologies en agriculture dans la sécurité alimentaire en Afrique de l’Ouest et du centre à la demande du CORAF/WECARD. L’USAID a financé l’étude alors que l’IITA a accueilli le consultant et supervisé l’étude. Les pays étudiés sont le Burkina Faso, le Cameroun, la Côte d’Ivoire, le Ghana, le Mali, le Nigeria et le Sénégal.

Le mandat de l’étude était :

• De faire un inventaire des activités en cours ou planifiées dans le domaine des biotechnologies ;
• D’identifier les lacunes et les perspectives d’avenir pour les interventions de l’agro-biotechnologie dans le domaine de la sécurité alimentaire dans la région ;
• De développer un cadre pour aider à définir le classement des priorités dans la recherche en biotechnologie et son développement dans une perspective régionale.

La méthodologie de l’étude comprend une consultation des professionnels et des institutions clés dans la région, une étude de la littérature et des visites sur le terrain.

Les forces et les faiblesses des sept pays étudiés dans le domaine des biotechnologies ainsi que le potentiel pour le développement des biotechnologies sont présentés ici.

La capacité de recherche en biotechnologie au Burkina Faso, évaluée en fonction de la main d’œuvre et des infrastructures est faible mais elle est généralement meilleure qu’au Mali.

Au Cameroun, il y a une force considérable en culture de tissus et un potentiel croissant pour le travail en biologie moléculaire. Une réhabilitation de grande envergure du laboratoire de culture de tissus J.P. Johnson est nécessaire. L’amélioration traditionnelle des plantes n’a pas pu résoudre le problème de la pourriture racinaire du chou Caraïbe au Cameroun. Les techniques de transformation des plantes pourront peut-être résoudre ce problème.

L’infrastructure pour les biotechnologies en Côte d’Ivoire est au-dessus de la moyenne de la sous-région sauf pour la main d’œuvre.
L’infrastructure des biotechnologies au Ghana est faible mais la base de main d’œuvre est relativement forte.

Le Mali est de loin le pays qui présente les plus faibles capacités en biotechnologies parmi les pays étudiés. Il est nécessaire de consolider l’infrastructure des services de soutien parce que le Mali est en train de développer son potentiel en biotechnologie.

Au Nigeria, l’infrastructure pour la culture de tissu est importante mais celle concernant les biotechnologies est relativement faible. Cela changera cependant parce que le Nigeria est en train de développer une infrastructure de pointe au village des sciences SHESTCO à Abuja. Le Nigeria a montré récemment un grand intérêt pour l’utilisation de la biotechnologie en tant qu’outil pour relancer l’agriculture et le développement socio-économique général. Une loi et des règlements pour encadrer le développement des biotechnologies ont été établis. De plus, des institutions chargées de promouvoir la recherche et le développement des biotechnologies ainsi que des liens avec les entreprises ont été créées.

Le Nigeria et le Mali sont les deux pays de la sous-région qui pourraient être des cibles pour un soutien spécial en biotechnologie de l’USAID. Les infrastructures de laboratoire et la main-d’œuvre au Sénégal sont parmi les meilleures de la sous-région. Le niveau (standard) du travail en biotechnologie est relativement plus avancé que dans nombre de pays de la sous-région.

Un tableau brosse le niveau de sensibilisation du public et les difficultés des biotechnologies dans la sous-région. Une difficulté clé, pour laquelle le NARS fait régulièrement des demandes, est la formation tant au niveau des chercheurs que des techniciens à la fois pour la biotechnologie et la bio-sécurité. Ce point a été mis en exergue dans chaque pays visité. Le deuxième problème a trait à l’infrastructure du laboratoire.

Moins de 50 % des ONG étudiées ont eu une attitude positive vis-à-vis tant des produits biotechnologiques que des aliments génétiquement modifiés.

Tous les pays de la sous-région ont pris des mesures variées pour la bio-sécurité. Cela va du projet de constituer des comités de bio-sécurité à la transformation de leurs documents cadres concernant la bio-sécurité en des dispositions législatives. Les plus avancés dans ce domaine sont le Cameroun, la Côte-d’ivoire et le Nigeria. Dans le cas du Nigeria, le Cabinet a donné le feu vert pour commencer à implémenter les lignes directrices de la législation concernant les biotechnologies en instance. Le Cameroun est le seul pays qui a ratifié le protocole de Carthagène sur la bio-sécurité. Tous les autres pays ont signé le protocole et sont encore dans le processus de ratification.

La proposition de cadre régional pour la biotechnologie s’inspire du processus de planification de l’Association pour Renforcer la Recherche Agronomique en Afrique de l’Est et du centre (Association for Strengthening Agricultural Research in East and Central Africa (ASARECA)) depuis que les besoins de construire des capacités dans les biotechnologies de la sous-région sont aussi appliqués sur une étendue plus grande dans la sous-région du CORAF. Depuis 1998, l’ASARECA a cherché de l’aide de donateurs pour développer le processus de construction des
capacités en biotechnologies. L’étude de fond entreprise par le CORAF dans ce rapport devrait accélérer le processus de planification et de gestion.

Le rapport propose que la hiérarchisation et la gestion des activités dans le domaine des biotechnologies en Afrique de l’Ouest et du centre se fassent dans le processus de gestion actuel du réseau CORAF/WECARD. Les trois laboratoires de la sous-région capables d’utiliser la cartographie avec les Locus de Caractères Quantitatifs (QTL), c.-à-d. le Centre d’Etude Régional pour l’Amélioration de l’Adaptation à la Sécheresse (CERAAS) au Sénégal, l’Institut Ghanéen de Recherche sur le Cacao au Ghana et le Centre National de Recherche Agronomique (CNRA) en Côte d’Ivoire, doivent être les destinataires d’un premier soutien qui leur permettra de pouvoir faire des transformations. De tels laboratoires, parmi d’autres qui pourraient émerger, peuvent être utilisé comme terreau pour la formation en biotechnologie pendant que l’on résoudra les problèmes sous-régionaux qui demandent une intervention des techniques de pointe en biotechnologie.

Le cadre des biotechnologies proposé pour la sous-région de l’ASARECA n’est pas spécifique et peut être adopté par le CORAF/WECARD. Le processus d’examen de la bio-sécurité et l’administration se fait aux niveaux national, sous-régional, régional (l’Union Africaine) et mondial (protocole de Carthagène).

L’aspect du commerce n’est pas traité dans la proposition de cadre faite pour la région de l’ASARECA. Ce point est pris en compte dans les recommandations du CORAF/ WECARD. Le rôle des questions sanitaires et phytosanitaires dans la mise en œuvre des mesures de bio-sécurité sous-régionales dans le contexte national et sous-régional est étudié.

Ce rapport sera soumis à l’examen du CORAF/WECARD et de l’USAID lors d’un atelier de travail des partenaires afin de définir les priorités pour un cadre d’action régional en biotechnologie et en bio-sécurité.
L’Afrique subsaharienne est considérée comme l’une des régions du monde où l’alimentation n’est pas assurée. Les statistiques de la FAO disponibles montrent une dégradation de la situation. Selon ces dernières, la capacité africaine globale de production alimentaire augmente de 1,4 % alors que sa population augmente d’environ 2,4 % par an (FAO 2000). Il faudra inverser le processus de déclin continu de la production alimentaire si une insécurité massive en alimentation, une pauvreté ou une instabilité politique est annoncée. On estime que l’augmentation de superficie et l’irrigation sont responsables des 45 % de l’augmentation attendue alors que les 55 % restant devront venir d’une intensification de la production sur les terres cultivées (Kitch et al. 2002).

La biotechnologie est définie comme étant “toute technique qui utilise des organismes vivants ou des substances provenant de ces organismes pour faire ou modifier un produit afin d’améliorer les plantes ou les animaux ou développer des micro-organismes pour des utilisations spécifiques” (Kitch et al. 2002). Cela représente un gradient de technologie qui va des méthodes biologiques traditionnelles comme la fabrication de la bière, la fermentation, la panification, le contrôle biologique, l’insémination artificielle et le transfert d’embryon jusqu’à la
La biotechnologie moderne qui inclut le génie génétique, la production d’anticorps hautement spécifiques ou monoclonaux pour le diagnostic, les nouvelles méthodes de culture de tissus débouchant sur les organismes transgéniques et les ADN marqueurs qui servent à évaluer la variation, les analyses aidées par la génétique ou la sélection assistée. La biotechnologie est multidisciplinaire. Elle est utilisable pour la santé (diagnostics, vaccins, médicaments et transplantation d’organes), l’industrie (fermentation, plastiques biodégradables), l’environnement (nettoyage de polluants avec des micro-organismes) et en agriculture. Certaines utilisations agricoles sont :

- Production de grandes quantités de matériel de plantation sans virus par culture de tissus.
- Caractérisation de l’ADN des plantes cultivées et l’utilisation de marqueurs génétiques qui facilitent la sélection pour accélérer le processus d’amélioration.
- Croisement d’espèces végétales non apparentées difficile à faire dans des conditions naturelles pour l’amélioration variétale comme la fusion de protoplastes et le sauvetage d’embryon.
- Production de vaccins (recombinants) qui est hautement spécifique et efficace pour la prévention des maladies.
- Des diagnostics performants pour détecter et caractériser les parasites des plantes, les maladies animales ou les contaminantes des aliments.
- La production des organismes génétiquement modifiés (OGM) contre des stress biotiques (insectes nuisibles, maladies, mauvaises herbes) ou abiotiques (faible fertilité du sol ou sécheresse).

Compte tenu du potentiel des biotechnologies à résoudre les problèmes alimentaires croissants de l’Afrique sub-saharienne, une étude récente a été entreprise sous le patronage de l’Institut International d’Agriculture Tropicale (International Institute of Tropical Agriculture (IITA)) (Alhassan 2001) pour identifier les faiblesses, les forces et les perspectives d’avenir des applications biotechnologiques en agriculture dans des pays sélectionnés d’Afrique de l’Ouest et du centre. Les pays étudiés étaient le Cameroun, la Côte d’Ivoire, le Ghana, le Nigeria et le Sénégal. L’étude a montré :

- Des différences dans les capacités pour les biotechnologies dans les pays étudiés. Le Sénégal et la Côte d’Ivoire ont les infrastructures les plus développées.
- Le Nigeria, le Sénégal le Cameroun, le Ghana et la Côte d’Ivoire sont, dans l’ordre, les pays qui ont le plus de main d’œuvre qualifiée dans le domaine des biotechnologies.
- En 2000, aucun pays n’avait de loi de bio-sécurité mais le Cameroun et la Côte d’Ivoire avaient des avant-projets de loi très proches de la finalisation.
- Aucune loi sur la propriété intellectuelle ou sur le partage des bénéfices n’était promulguée.
- Aucun pays n’avait un règlement national sur les biotechnologies établi.
- L’organisation sous-régionale (Conférence des Responsables Africains et Français de la Recherche Agronomique (CORAF)/ Conseil pour l’Afrique de l’ouest pour la recherche agricole et le développement (WECARD - West
African Council for Agricultural Research and Development) n’avait pas d’orientation claire spécifique à la biotechnologie.

- Faible engagement du gouvernement pour financer la recherche en biotechnologie.
- L’équipement de laboratoire ou les réactifs déficients ou manquants.
- Approvisionnement électrique des stations de recherche instable.
- Mauvaise image des biotechnologies.
- Faible accès à l’information et faible communication des technologies par les scientifiques.
- De rares investisseurs du développement financent la recherche en biotechnologie pour le développement dans la sous-région.

Partenaires ayant permis ce rapport

CORAF/WECARD

Cette organisation sous-régionale a pour mission:

- De consolider la position de la sous-région de l’Afrique de l’Ouest et du centre dans le contexte de la recherche agronomique internationale pour le développement.

Les objectifs du CORAF/WECARD sont de :

- Promouvoir la coopération, la consultation et l’échange d’information entre les membres de l’institution et les autres partenaires.
- Définir des objectifs communs de recherche régionale et sous-régionale en établissant des priorités.
- Servir de corps consultatif pour la recherche menée par des organisations régionales et internationales travaillant au niveau sous-régional.
- Développer des programmes de recherche communs de façon à renforcer les activités complémentaires du CORAF/WECARD et de ses partenaires.
• Harmoniser les activités des réseaux existants et faciliter la création de réseaux régionaux ou d’autres unités de recherche opérationnelles ayant un caractère régional.

Les 21 pays membres pays du CORAF/WECARD sont énumérés dans la table 1.

Table 1. Pays membres du CORAF/WECARD.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Pays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mauritanie</td>
<td>Togo</td>
</tr>
<tr>
<td>Mali</td>
<td>Bénin</td>
</tr>
<tr>
<td>Cap Vert</td>
<td>Nigeria</td>
</tr>
<tr>
<td>Sénégal</td>
<td>Niger</td>
</tr>
<tr>
<td>Gambie</td>
<td>Tchad</td>
</tr>
<tr>
<td>Guinée-Bissau</td>
<td>Cameroun</td>
</tr>
<tr>
<td>Guinée Conakry</td>
<td>République centrafricaine</td>
</tr>
<tr>
<td>Sierra Léone</td>
<td>Gabon</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>Congo</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>République Démocratique du Congo</td>
</tr>
<tr>
<td>Ghana</td>
<td></td>
</tr>
</tbody>
</table>

Ghana

Le CORAF/WECARD reconnaît la biotechnologie en tant qu’outil permettant d’augmenter la productivité agricole et ainsi, la sécurité alimentaire en Afrique de l’Ouest et du centre.

Institut International d’Agriculture Tropicale (IITA – International Institute of Tropical Agriculture)

L’IITA souhaite améliorer la sécurité alimentaire, les revenus et le bien-être des personnes à faible ressource principalement dans les zones humides et chaudes de l’Afrique sub-saharienne en faisant des recherches (y compris en biotechnologie) et en ayant des activités complémentaires dans le but d’augmenter la production agricole, d’améliorer les systèmes alimentaires et la gestion durable des ressources naturelles en partenariat avec des associés nationaux et internationaux. L’IITA conduit des recherches en biotechnologie pour répondre aux besoins alimentaires et de revenus. Puis elle transfère, en collaboration avec des partenaires, les produits des
biotechnologies du laboratoire vers le marché. Elle sert de plate-forme pour le transfert de biotechnologie entre des laboratoires de pointe et le NARS et renforce des capacités sélectionnées du NARS pour utiliser et surveiller les biotechnologies par des relations réciproques approfondies et des programmes de formation par la recherche.

A ce titre l’IITA se regarde comme un utilisateur des outils biotechnologie et catalyse - comme une méthode biotechnologique innovante – la recherche pour établir une pleine capacité (tand pour les produits que pour les outils) pour la sélection moléculaire et le diagnostic. Par conséquent, l’IITA entreprend dans le domaine des biotechnologies des recherches pour développer les méthodes de culture de tissus et de micro-propagation, de recombinaison de l’ADN pour le diagnostic de la biodiversité et détection des parasites et des contaminants des aliments, de transformation des plantes cultivées pour l’alimentation et la génomique pour l’introgression et la sélection assistée par des marqueurs. Les plantes cultivées principalement étudiées sont le bananier, le plantain, le manioc, le dolique, le maïs, l’iganme, récemment le cacao et dans une moindre mesure le soja.

L’Agence américaine pour le Développement International (United States Agency for International Development (USAID))

L’USAID est un investisseur du développement qui cherche à aider les pays de la sous-région, entre autres, à développer une compétence pour la biotechnologie agricole afin de résoudre les problèmes de sécurité alimentaire de la région. Elle a accepté d’aider le CORAF/WECARD à élargir le champ de l’étude entreprise par Alhassan (2001). L’étude actuelle sur la biotechnologie agricole en Afrique de l’Ouest et du centre est ainsi financée par l’USAID à travers l’IITA.

Mission

La mission du scientifique invité pour entreprendre cette étude était:

- De faire un inventaire des activités actuelles ou planifiées dans le domaine des biotechnologies ;
- D’identifier les manques et les perspectives d’avenir pour les interventions de biotechnologie agricole qui répondront aux questions de sécurité alimentaire dans la région ;
- De développer un cadre pour aider à établir une liste de priorités pour la recherche et le développement des biotechnologies d’un point de vue régional.

Résultats attendus des recherches

Les résultats attendus des recherches étaient :
• De dresser un inventaire des activités de recherche de biotechnologie agricole actuelles ou planifiées ;
• D’identifier les perspectives d’avenir de l’intervention de la biotechnologie agricole afin d’assurer la sécurité alimentaire dans la sous-région ;
• D’établir un cadre qui facilitera l’établissement de priorités pour la recherche et le développement des biotechnologies et la mise en œuvre à partir d’une perspective régionale établie.

En outre, :
• D’inventorier les priorités de recherche et celles utilisant les outils de biotechnologie ;
• De déterminer les lacunes dans les compétences en biotechnologie agricole pour la production végétale et animale ainsi que le rôle du NARS et du CORAF pour répondre à ces lacunes ;
• De définir le statut du transfert des biotechnologies aux fermiers et aux industriels de l’agroalimentaire ;
• D’identifier le rôle global du CORAF/WECARD dans la sous-région et les leçons à prendre des autres organismes sous-régionaux comme l’ASARECA ;
• De comprendre la position des directeurs du NARS sur la biotechnologie agricole et l’engagement de leurs pays dans les questions de biotechnologie comme cela a été mis en évidence par le taux de soutien aux biotechnologies.

Plus spécifiquement pour la réglementation dans le domaine de la biologie, cette étude voudrait déterminer les stratégies nationales existantes pour la biotechnologie ainsi que leur plan d’action, leur degré d’engagement aux différents protocoles internationaux pour la bio-sécurité et le cadre d’exploitation des biotechnologies et le statut de leur mise en œuvre.

Les autres résultats attendus étaient de déterminer la capacité et les besoins de droits de propriété intellectuelle ainsi que d’évaluer les compétences pour évaluer les impacts des biotechnologies et le niveau général de sensibilisation sur le thème des biotechnologies pour un échantillon de partenaires. Cette étude donnera des recommandations pour l’organisation d’un suivi, d’un programme sous-régional d’agriculture de biotechnologie et de bio-sécurité ou un réseau pour la collaboration et l’harmonisation des protocoles qui nécessite un atelier de travail régional pour les partenaires consultatifs.

Méthodologie

Les questionnaires rédigés pour l’étude détaillée sont présentés dans l’annexe 1. Les personnes de contact pour l’étude détaillée sont énumérées dans l’annexe 2.

Observations

Un long voyage (Mars et Mai-Juillet 2002) qui comprend tous les pays inclus dans l’étude détaillée, a permis de récupérer tous les questionnaires (100%) dans chaque pays. Les visites personnelles ont aussi facilité les discussions avec les partenaires clés et confirmé les résultats des questionnaires confrontés avec la réalité sur le terrain.

Etant donné la nature très variée des résultats attendus, la liste des partenaires a été étendue pour inclure les NARS, les ministères et les agences gouvernementales, les organisations non gouvernementales (ONG) à tendance environnementale ou en contact direct avec les fermiers, les Centres Internationaux de Recherche Agronomique (IARC- International Agriculture Research Centers) et les Instituts de Recherche supérieure (ARI- Advanced Research Institutes) travaillant dans la sous-région, les médias et les agences relevant du secteur privé. Les missions et résultats attendus clés sont présentés pays par pays ou par agence. Il en est de même pour les rubriques générales et les discussions.

Observations pays par pays

Burkina Faso

CNRST pour cette étude détaillée étaient l’INERA et le département de la Technologie Alimentaire de l’IRSAT.

INERA

L’INERA a un mandat pour les plantes cultivées suivantes : coton, riz, fruit et légumes, légumineuses (arachide, soja, dolique) et les céréales traditionnelles (sorgho, millet et maïs). Les programmes sur le riz, le coton et les céréales traditionnelles se déroulent à Faracoba près de Bobo Dioulasso. Le programme sur les légumineuses et le laboratoire central sont à Kamboinse à quelques kilomètres de Ouagadougou. Le laboratoire de virologie se trouve dans le complexe du laboratoire central. Ce laboratoire dirigé par le Dr Konate est un des laboratoires pour le diagnostic moléculaire de virologie végétale le mieux équipé de la sous-région. L’équipement a été fourni par différents programmes de collaboration. Les principales sources de financement ont été l’USAID, la Coopération Française et l’Union Européenne (UE). Les fonds de fonctionnement sont obtenus par des institutions avec lesquelles le laboratoire collabore comme l’Institut Ecossais de Recherche sur les Plantes Cultivées (Scottish Crop Research Institute) et l’IRD (Institut pour la recherche et le développement — anciennement l’ORSTOM, France), le Projet niébé (ou dolique) pour l’Afrique (PRONAF) (avec l’IITA comme agence de mise en œuvre pour le continent) et l’AIRE (Agence pour l’Investissement dans la Recherche à l’Etranger). Huit NARS francophones sont regroupés pour ces ressources financières. Environ 60'000 Euros de ces capitaux ont été alloués au laboratoire de virologie pour une période de deux ans. Le gouvernement du Burkina Faso finance seulement les salaires des travailleurs et les services essentiels pour le laboratoire. Le laboratoire de virologie se développe sur des bons projets soumis à un financement. Il apprécie une électricité stable et n’a pas de problème d’accès à Internet. Le laboratoire de virologie a, durant les dix dernières années, formé six personnes au niveau du doctorat en collaboration avec l’Université de Ouagadougou. Les pays qui ont bénéficié des services de ce laboratoire sont le Burkina Faso, le Bénin, la République Centrafricaine et le Mali. Actuellement, quatre autres professionnels sont doctorants dans des domaines différents de la virologie végétale y compris les mécanismes de résistance aux maladies virales et les études sur les bio-pesticides (spécialement l’utilisation d’un virus pour lutter contre Helicoverpa armigera, l’anthonome du coton). Le laboratoire est assez vieux et a besoin d’être réhabilité. Il ne possède pas de serre hermétique qui empêcherait les insectes de s’échapper. A cause d’une chaleur extrême (au-dessus de 40°C à certaines périodes de l’année), l’utilisation de la serre même avec de l’air conditionné n’a pas été un succès. Les tarifs de l’électricité continuent à monter et il est à craindre qu’en absence de projets, les tarifs ne puissent être maintenus. La plupart des publications pertinentes sont en anglais et pas en français. Il est difficile pour les scientifiques de traduire du français vers l’anglais.
Département de technologie alimentaire (DTA)

Le DTA est sous l’égide de l’IRSAT. La personne de contact au laboratoire était le Dr Brehima Diawara. Les activités de recherche de ce laboratoire se concentrent sur l’isolement de cultures pour fermenter le pito (dolo), une bière locale, et le dawadawa (soumbala), un condiment. La bactérie isolée pour le condiment alimentaire est Bacillus subtilis. Les contraintes auxquelles le laboratoire doit faire face comprennent le fait qu’il n’y ait pas de fermenteurs ou de bio-réacteurs, une contrainte majeure pour un laboratoire spécialisé dans la fermentation. L’isolat de bactérie obtenu et utilisé dans ce laboratoire doit être bien caractérisé et les outils moléculaires peuvent faciliter cette caractérisation. Il est par conséquent nécessaire de former le personnel dans le domaine des biotechnologies de façon à ouvrir la voie à l’utilisation de techniques moléculaires pour caractériser les isolats. Actuellement, ce laboratoire utilise seulement la microscopie pour caractériser les micro-organismes. Les travailleurs rencontrent des problèmes comme un mauvais approvisionnement en électricité, l’absence de journaux actuels et le manque d’accessibilité à Internet. Une plante pilote a été choisie et un nouveau laboratoire pour le DTA est maintenant en construction grâce à un prêt de la Banque Mondiale au gouvernement.

Centre International de Recherche et de Développement sur l’Elevage en zone Sub-humide (CIRDES)

Perspectives

Les capacités de recherche en biotechnologie au Burkina Faso, si on les estime par rapport à la main d’œuvre et à l’infrastructure, sont faibles. Il n’existe pas de laboratoires de tissus pour l’agriculture mais l’infrastructure de laboratoire pour le travail en biologie moléculaire principalement au laboratoire de virologie végétale et celui de génétique des plantes de l’Université de Ouagadougou (Table 2) est satisfaisante.
Table 2. Proportion de laboratoires en état de fonction dans des NARS sélectionnés en Afrique de l’Ouest et du centre.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Culture de tissus</th>
<th>Marqueurs ADN</th>
<th>Fermentation</th>
<th>Nombre de laboratoires examinés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burkina Faso</td>
<td>0</td>
<td>66.7</td>
<td>33.3</td>
<td>3</td>
</tr>
<tr>
<td>Cameroun</td>
<td>100</td>
<td>33.3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>1 *</td>
</tr>
<tr>
<td>Ghana</td>
<td>46.2</td>
<td>30.8</td>
<td>15.4</td>
<td>13</td>
</tr>
<tr>
<td>Mali</td>
<td>33.3</td>
<td>33.3</td>
<td>66.7</td>
<td>3</td>
</tr>
<tr>
<td>Nigeria</td>
<td>100</td>
<td>28.6</td>
<td>42.9</td>
<td>7</td>
</tr>
<tr>
<td>Sénégal</td>
<td>50</td>
<td>100</td>
<td>75</td>
<td>4</td>
</tr>
</tbody>
</table>

* Résultant de la fusion de plusieurs petits laboratoires

Une formation en bio-sécurité comprend une approche du sujet via des ateliers de formation ciblés ou une formation reçue durant l’enseignement de troisième cycle ou d’un autre programme dans une discipline proche de la biotechnologie. Quelle que soit l’institution, un laboratoire était considéré comme non-fonctionnel s’il manquait des outils de biotechnologie intéressants ou s’il était inopérant pour une raison quelconque. Parmi tous les pays étudiés, c’est au Burkina Faso que la main d’œuvre en biotechnologie agricole était la plus faible (Table 3). Comme c’est le cas avec tous les NARS de la sous-région, la quantité de personnel formé en bio-sécurité était soit minimale soit nulle. Dans le cas du Burkina Faso, il n’y en avait pas. L’INERA a prévu de construire un laboratoire moderne de biotechnologie végétale à Kamboinse.

Les activités de recherche en biotechnologie agricole au Burkina Faso couvrent la caractérisation moléculaire des céréales communes (maïs, millet et sorgho) ainsi que celle des virus des plantes et des anticorps monoclonaux pour la recherche de diagnostic (table 4). Le DTA collabore avec le Conseil pour la Recherche Scientifique et Industrielle (CSRI) – Institut de Recherche sur l’Alimentation (FRI) (Council for Scientific and Industrial Research (CSRI)–Food Research Institute (FRI)) du Ghana pour une étude de fermentation des aliments (dawadawa ou soumbala). La recherche en biotechnologie animale effectuée en collaboration avec le CIRDES comprend la caractérisation ADN du trypanosome et le transfert d’embryon (Table 5). Les activités de recherche en biotechnologie planifiées pour les prochaines années incluent le travail de culture de tissus ainsi que l’isolement et la caractérisation moléculaire de microbes du sol.
Table 3. Main d’œuvre disponible pour la biotechnologie et la biosécurité dans les NARS de l’Afrique de l’Ouest et du centre

<table>
<thead>
<tr>
<th></th>
<th>Biotechnologie</th>
<th>Diplômés en biosécurité</th>
<th>Total</th>
<th>% en biosécurité</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diplômé</td>
<td>Tech</td>
<td>Diplômé</td>
<td>Tech</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cameroun</td>
<td>15</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>10</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Ghana</td>
<td>43</td>
<td>24</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Mali</td>
<td>15</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nigeria</td>
<td>19</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sénégal</td>
<td>47</td>
<td>32</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>154</td>
<td>88</td>
<td>13</td>
<td>6</td>
</tr>
</tbody>
</table>
Table 4. Projets de recherche en biotechnologie végétale au Burkina Faso.

<table>
<thead>
<tr>
<th>Domaine de recherche</th>
<th>Matériel étudié</th>
<th>Outils de biotechnologie</th>
<th>Laboratoire responsable</th>
<th>Produit Désiré</th>
<th>Stade de développement</th>
<th>Commanditaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caractérisation moléculaire</td>
<td>Millet, sorgho, maïs, riz</td>
<td>Caractérisation d'ADN</td>
<td>INERA</td>
<td>Plantes cultivées de constitution génétique connue</td>
<td>Planifié</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Caractérisation enzymatique</td>
<td>Millet, Mildiou</td>
<td>Pas applicable</td>
<td>INERA</td>
<td>Contrôle du mildiou</td>
<td>En cours</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Culture de tissus</td>
<td>Pomme de terre, Patate douce, Iggane,</td>
<td>Culture de tissus</td>
<td>INERA</td>
<td>Matériels de plantation propre</td>
<td>Planifié</td>
<td>Gouvernement</td>
</tr>
<tr>
<td></td>
<td>Manioc, Céréales (culture d’anthère)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caractérisation moléculaire et diagnostic</td>
<td>Virus des plantes</td>
<td>ADN</td>
<td>INERA</td>
<td>Contrôle efficace des virus des plantes</td>
<td>En cours</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>ISOlement des microbes du sol et caractérisation</td>
<td>Rhizobia mycorrhizae</td>
<td>Fermentation</td>
<td>INERA</td>
<td>Inoculum comme fertilisant</td>
<td>Planifié</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>ISOlement de culture de fermentation d’aliments</td>
<td>Soumbala, dawadawa (graines de Parkia fermentées)</td>
<td>Fermentation</td>
<td>DTA/ISAT avec la Recherche sur l’Alimentation du Ghana</td>
<td>Condiment alimentaire</td>
<td>Technologie</td>
<td>DANIDA</td>
</tr>
</tbody>
</table>
Table 5 : Projet de recherche en biotechnologie animale au Burkina Faso.

<table>
<thead>
<tr>
<th>Domaine de recherche</th>
<th>Matériel étudié</th>
<th>Outils de biotechnologie</th>
<th>Laboratoire responsable</th>
<th>Produit Désiré</th>
<th>Stade de développement</th>
<th>Commanditaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cartographie des gènes des trypanosomes</td>
<td>Trypanosiomase</td>
<td>Caractérisation de l’ADN</td>
<td>INERA en collaboration avec le CIRDES</td>
<td>Trypanosomes caractérisés pour contrôle</td>
<td>En cours</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Transfert d’embryon</td>
<td>Embryon pour le transfert chez le bétail</td>
<td>Pas applicables</td>
<td>INERA</td>
<td>Augmentation de la reproduction du bétail</td>
<td>En cours</td>
<td>Gouvernement</td>
</tr>
</tbody>
</table>
Cameroun

Le Cameroun était compris dans la première étude détaillée de 2000 (Alhassan 2001). L’IRAD (Institut de Recherche agricole et de Développement - Institute of Agricultural Research and Development), le CARBAP (Centre Africain de recherches sur les bananiers et le plantain) et l’Université de Yaoundé I sont les institutions qui font de la recherche en biotechnologie agricole au Cameroun. Les départements intéressants sont le laboratoire de santé animale Wakwa à Ngouandere et le laboratoire de biotechnologie JP Johnson à Ekona. L’université de Buea comprend un centre de biotechnologie actif mais il est actuellement spécialisé sur la recherche en biotechnologie sur la malaria et l’onchocercose. Il peut entreprendre une formation de troisième cycle en collaboration avec l’IRAD ou une autre institution agricole. Le laboratoire Wakwa travaille actuellement dans les domaines suivants : épidémiologie de la fièvre aphteuse en utilisant les procédures de diagnostic moléculaire et le contrôle de la Maladie de Newcastle (ou Peste aviaire) pour les volailles en milieu rural. Des méthodes efficaces d’administration des virus sont aussi étudiées mais ces études n’impliquent pas une approche comprenant les techniques modernes de biotechnologie. Les contraintes auxquelles le laboratoire Wakwa doit faire face comprennent la main d’œuvre parce que, suite à des contraintes de financement pour une recherche efficace, toute la main d’œuvre qualifiée a quitté l’Institut.

Centre Africain de Recherches sur Bananiers et les Plantains (CARBAP)

Le CARBAP, connu sous l’abréviation CRBP (Centre de Recherche pour le Bananier et le Plantain - Center for Research in Banana and Plantain), est localisé à Njombe. La personne de contact est son directeur, le Dr Kodjo Tomekpe, un sélectionneur végétal qui a aussi utilisé la biologie moléculaire. Le CARBAP a une unité de culture de tissus et une nouvelle unité de biologie moléculaire. L’unité de biologie moléculaire a été rajoutée après la dernière étude détaillée de 2000. Actuellement, l’activité principale est la culture de tissus. Les projets de culture de tissus sont le sauvetage d’embryon chez le bananier et l’obtention de semences hybrides chez le plantain ainsi que leur multiplication in vitro. Le CARBAP est mandaté par le Réseau International d’Amélioration des Bananiers et des Plantains (International Network for the Improvement of Banana and Plantain (INIBAP)) pour multiplier des plants sans virus et les distribuer dans la sous-région d’Afrique de l’Ouest et du centre (WCA). Il doit aussi réaliser l’embryogenèse somatique des bananiers et des plantains ainsi que la conservation in vitro de leur germplasme à 14-15°C. L’unité de biologie moléculaire établie en 2002 a deux objectifs : (i) diagnostic moléculaire pour le virus de la striure du bananier en utilisant la méthode d’amplification en chaîne par réaction (PCR) et (ii) identification de nouveaux génomes en utilisant les microsatellites grâce à une recherche en collaboration avec le Centre de coopération internationale en recherche agronomique pour le
développement (CIRAD) à Montpellier. L’unité de formation a organisé un cours régional pour les pays francophones sur l’utilisation des marqueurs moléculaires, le CIRAD fournissant le personnel. Le cours s’est déroulé du 6 au 14 novembre 2001. Le CARBAP est capable d’organiser ce type de formation dans le futur avec le soutien du CIRAD. Le CARBAP est aussi un centre régional pour la recherche sur les bananiers et les plantains pour cinq pays, c.-à-d., le Cameroun, la République Centrafricaine, la République Démocratique du Congo, la Guinée Equatoriale et le Gabon, qui sont tous des pays membres du CORAF/WECARD. Les autres domaines de recherche au CARBAP comprennent la production et la distribution de mycorhizes. Le CARBAP a identifié la mycorhize contre les nématodes chez le bananier. Le transfert de technologie du CARBAP aide une compagnie privée SPNP (Société des plantations de Njombe-Penja) à surveiller les maladies des plantes grâce à une taxe, les petits fermiers indirectement via le matériel de culture de tissus envoyé par le NARS et il fourni aux fermiers la technique de partage du bulbe pour multiplier le plantain. Le CARBAP s’inquiète du manque d’information des scientifiques africains sur ce que font leurs collègues africains dans des laboratoires proches. Pour y remédier, il propose différents réseaux de biotechnologie pour la culture de tissus de plantes cultivées spécifiques et la sélection par mutation de bananiers et de plantains provenant de cultures somatiques ainsi que la biologie moléculaire qui est considérée comme indispensable pour un travail stratégique. Le CARBAP considère que le NARS devrait être habilité à établir sa propre stratégie de recherche en biologie moléculaire parce qu’il ne partage pas l’opinion que ce type de recherche sera coûteux pour la participation du NARS. Le CARBAP fait face aux contraintes suivantes : électricité mais il a maintenant acheté quatre générateurs pour chacun de ses quatre laboratoires ; la main d’œuvre plus particulièrement les biologistes formés en biologie moléculaire et le financement parce que seule l’Union Européenne et le gouvernement du Cameroun fournissent des financements qui semblent être inadaptés. Des problèmes de communication en ce qui concerne les services du téléphone et la connectivité à Internet existent.

Le laboratoire de biotechnologie JP Johnson

C’est un des laboratoires qui a été largement étudié dans l’étude détaillée de 2000 (Alhassan 2001). Le laboratoire est encore sous la direction du Dr Zok Simon. Il consacre actuellement tous ses équipements pour le travail de culture de tissus pour les racines ou des tubercules comestibles suivant son premier mandat. Les projets en cours et planifiés pour des espèces variées sont indiqués ci-dessous par espèces cultivées.

Manioc

- Multiplication par culture de tissus. Des boutures dérivées de culture de tissus sont distribuées aux fermiers. Les fermiers font appel à du matériel frais dérivé de culture de tissus tous les 3–4 ans lorsque la vigueur de la plante diminue.
• Diagnostic moléculaire et amélioration des plantes contre la pourriture de la racine et la faible formation de tubercule. Le travail dans ce domaine n’a pas encore commencé.
• Nécessité de conserver les accessions locales in vitro mais il n’y a pas l’équipement de laboratoire.

Igname
• Multiplication par culture de tissus. Le laboratoire a déjà obtenu de très petits tubercules à partir de matériel provenant de culture de tissus. Il va maintenant utiliser les mycorhizes pour augmenter la taille des tubercules. Des résultats encourageants ont été obtenus mais la recherche a été suspendue par manque de fonds.
• Il continue avec le maintien du germplasme en champs parce que le laboratoire manque de l’équipement pour faire une conservation in vitro.

Chou Caraïbe (Xanthosoma sagittifolium)
• La maladie de la pourriture des racines du chou Caraïbe (Pythium myrothilum) reste réfractaire à tout traitement malgré plusieurs années de recherche sur la façon de contenir la maladie, causée par un champignon. Une sélection actuelle pour la résistance au champignon est en cours alors que la culture de tissus est utilisée pour multiplier du matériel de plantation exempt de maladie. De plus, du travail est en cours pour:
 - améliorer au champ de la résistance à la pourriture de la racine
 - améliorer par mutation de la pourriture de la racine
 - le contrôle biologique en utilisant une bactérie pour contrôler le champignon responsable de la pourriture de la racine. Le programme va éventuellement nécessiter un fermenteur pour cultiver les bactéries qui serviront d’agent de contrôle biologique.
 - multiplier par embryogenèse somatique. Ce travail, en cours via une collaboration avec l’université de l’Etat de Penn, USA et le Centre National de Recherche Agronomique (CNRA) en Côte d’Ivoire, est actuellement suspendu par manque de réactifs.

La recherche planifiée sur le chou Caraïbe comprend le croisement de choux Caraïbe résistants avec des cultivars commerciaux. Il est nécessaire de faire des transferts de gènes par culture d’anthères, d’ovules ou sauvetage d’embryons. Il est aussi prévu de transférer des gènes par des moyens moléculaires mais il faut pour cela disposer d’un laboratoire de biologie moléculaire et de caractériser l’ADN du germplasme du chou Caraïbe. L’équipement obsolète est une contrainte majeure qui nécessite un ré-aménagement bien qu’une pièce ait été ré-agencée en chambre de transfert pour la culture de tissus. Un nouvel autoclave a aussi été fourni par l’Agence Internationale pour l’Energie Atomique (International Atomic Energy Agency (IAEA)). Ce laboratoire, qui était dans un état déplorable durant l’étude détaillée de 2000, est encore mal en point. Les autres contraintes sont le manque
d’argent pour l’équipement et les réactifs, la pénurie de personnel qualifié, le besoin d’un laboratoire de biologie moléculaire, la pauvreté des équipements de communication y compris les facilités Internet, le manque de journaux et les problèmes d’électricité (bien qu’un générateur au fuel d’appoint ait été acheté pour les résoudre). Une formation continue, complètement absente actuellement, est aussi nécessaire. Il y a des problèmes avec la pureté des réactifs de laboratoire.

Unité de biotechnologie de l’Université de Buea

C’est un laboratoire actif qui offre une formation de troisième cycle en biologie moléculaire dans le domaine du diagnostic et du contrôle de la malaria et de l’onchocercose. Il a la possibilité d’entreprendre une formation de troisième cycle en biotechnologie agricole si elle est financée et réalisée en relation avec l’IRAD ou une autre institution agricole du pays. La personne de contact est le Prof. Vincent Titanji.

Perspectives

<table>
<thead>
<tr>
<th>Domaine de recherche</th>
<th>Matériel étudié</th>
<th>Outils de biotechnologie</th>
<th>Laboratoire responsable</th>
<th>Produit désiré</th>
<th>Stade de développement</th>
<th>Commanditaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-propagation</td>
<td>Manioc</td>
<td>Culture de tissus</td>
<td>JP Jonhson</td>
<td>Matériel de plantation propre</td>
<td>Transféré aux fermiers</td>
<td>Gouvernement, IPGRI, Banque Mondiale, AfDB</td>
</tr>
<tr>
<td>Micro-propagation</td>
<td>Chou Caraïbe</td>
<td>Culture de tissus</td>
<td>Université de Yaoundé I</td>
<td>Matériel de plantation propre</td>
<td>Transféré</td>
<td>CIRAD, IPGRI, Montpellier (produit forestier non-destiné à la construction)</td>
</tr>
<tr>
<td>Contrôle de la pourriture des racines</td>
<td>Chou Caraïbe</td>
<td>Marqueurs moléculaires, sélection par mutation, transformation génétique</td>
<td>JP Johnson en collaboration avec des laboratoires de pointe</td>
<td>Chou Caraïbe résistant à la pourriture de la racine</td>
<td>Planifié</td>
<td>Recherche</td>
</tr>
<tr>
<td>Propagation de masse</td>
<td>Bananiers, plantains</td>
<td>Culture de tissus</td>
<td>CARBAP en collaboration avec l’IPGRI</td>
<td>Plantules propres</td>
<td>Transféré</td>
<td>Gatsby</td>
</tr>
<tr>
<td>Contrôle du virus de la striure</td>
<td>Bananiers</td>
<td>Caractérisation moléculaire</td>
<td>CARBAP</td>
<td>Plantules sans virus</td>
<td>Planifié</td>
<td>Recherche</td>
</tr>
<tr>
<td>Caractérisation du germlasme</td>
<td>Bananiers, plantains</td>
<td>Caractérisation moléculaire</td>
<td>CARBAP</td>
<td>Nouveau germlasme</td>
<td>Planifié</td>
<td>Union Européenne</td>
</tr>
</tbody>
</table>
Table 7. Projets de recherche en biotechnologie au Cameroun.

<table>
<thead>
<tr>
<th>Domaine de recherche</th>
<th>Matériel étudié</th>
<th>Outils de biotechnologie</th>
<th>Laboratoire responsable</th>
<th>Produit désiré</th>
<th>Stade de développement</th>
<th>Commanditaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fièvre aphteuse, autres maladies du bétail</td>
<td>Bétail</td>
<td>Culture de cellules, caractérisation de l’ADN et marqueurs moléculaires</td>
<td>IRAD</td>
<td>Vaccin recombinant</td>
<td>En cours</td>
<td>Wellcome Trust</td>
</tr>
</tbody>
</table>
Côte d’Ivoire

CNRA

Le CNRA travaille dans trois grands domaines : (i) recherche fondamentale comme le clonage de gène, (ii) transfert de technologie comme la libération de cultivars améliorés ou de matériel issu de culture de tissus et (iii) formation. Le laboratoire central de biotechnologie (CBL) est considéré comme un centre régional de formation en biotechnologie. En collaboration avec l’université d’Abidjan, environ 10 PhD sont en cours de formation au CBL. Le CNRA a organisé un programme de cours sur la formation et l’utilisation des marqueurs génétiques ainsi que des marqueurs biochimiques et moléculaires pour la gestion des ressources génétiques chez le riz du 26 février au 3 mars 2001. Le cours, organisé par le CORAF/WECARD et le CIRAD, était financé par l’Association des Universités Partiellement ou Entièrement de Langue Française (AUPELF—an Association for the support of Francophones). Les participants venaient du Bénin, du Burkina Faso, de la Côte d’Ivoire, du Mali, du Sénégal et du Togo. Dans l’avenir, le centre voudrait former le personnel tant des pays francophones que des pays anglophones. Les principaux domaines de recherche du CNRA inclureront la caractérisation ADN des ressources génétiques africaines, cette proposition a été soumise à l’IPGRI. 27 pays de la zone subsaharienne d’Afrique (neuf de l’Afrique de l’Ouest, de l’Est et du sud - trois plantes sont communes à chacun des neuf pays de chaque sous-région) ont recours à ses services. La standardisation des protocoles d’extraction de l’ADN est aussi prévue dans l’agenda.

L’IPGRI a demandé au CNRA d’entreprendre une étude ayant pour but de développer et de standardiser les protocoles d’extraction pour les plantes selon le

Les autres stations expérimentales du CNRA qui utilisent la biotechnologie agricole sont les stations à Bouaké, y compris la station pour le bétail et les animaux de basse-cour, et les unités de microbiologie et de recherche sur le coton. Il n’y a pas d’équipements pour le travail de biotechnologie pour le bétail et les animaux de basse-cour dans l’unité. Il est prévu de travailler avec l’Institut International de Recherche sur le bétail et les animaux de basse-cour (International Livestock Research Institute (ILRI)) et le Centre national pour la recherche et le développement de l’élevage en zone sub-humide (CIRDES) à Bobo. L’ILRI s’intéresse à la caractérisation ADN des volailles locales afin de déterminer leur diversité génétique. La caractérisation ADN a aussi commencé chez le bétail en collaboration avec le CIRDES. Aucun travail en biotechnologie n’est prévu pour les petits ruminants. Un travail d’amélioration traditionnel du mouton local de Dajallonke a commencé en 1984 et a abouti à une race locale améliorée pour sa taille. La pureté génétique de cette race locale améliorée de mouton pourrait être établie en utilisant la caractérisation par les marqueurs ADN. L’unité de microbiologie a produit avec succès des cultures de rhizobium qui sont destinées à être distribuées aux producteurs de soja. Cette distribution est actuellement en cours. L’unité de recherche sur le coton s’intéresse à la transformation génétique du coton pour répondre à la demande des cultivateurs de coton, à qui l’agent local de Monsanto a vanté le coton Bt. La recherche sur le coton transgénique attend la réglementation sur la bio-sécurité escomptée. Il existe de sérieuses préoccupations au sujet des insectes nuisibles et de leur résistance croissante aux insecticides communs. Des alternatives aux pyréthoides sont recherchées pour les insectes nuisibles du coton. Actuellement cinq à six pulvérisations sont effectuées pour les plantes cultivées. La gestion intégrée des nuisibles (IPM - Integrated pest management) avec ses seuils de pulvérisation est en cours d’introduction pour lutter contre la situation. Il est tentant de tester le coton Bt avant de l’introduire commerciallement, étant donné le défi que
représente actuellement la lutte contre les nuisibles. Il faut évaluer l’efficacité du coton Bt importé contre les souches locales d’anthonome. On espère utiliser la biotechnologie pour caractériser les populations d’insectes afin d’identifier les populations résistantes et leur distribution. La recherche en cours ainsi que celle prévue pour le CNRA en Côte d’Ivoire est résumée dans la table 8.

Commercialisation de matériel de plantation issu de culture de tissus

Elle est en cours à l’OCAB (Organisation Centre des producteurs–exportateurs d’Ananas et de Bananes) à Abidjan, Côte d’Ivoire. Cette entreprise, qui commercialise les bananes exportées, est la plus grande union de fermiers du pays. Les plantules issues de culture de tissus sont importées de France ou d’Afrique du Sud, puis elles sont endurcies et vendues aux fermiers. L’approvisionnement en plantules issues de culture de tissus en provenance de France (CIRAD) a commencé en 1999. L’entreprise espère produire ses propres plantules issues de culture de tissus. Le CNRA, étonnamment, n’a pas été contacté pour fournir le matériel issu de culture de tissus alors qu’il en a la capacité. Au moment de la visite (mi-mai 2002) à l’OCAB, le prix d’une plantule endurcie issue de culture de tissus pour les cultivateurs était de 480 francs CFA (environ 0,7 Dollars américains).

Perspectives

L’équipement de base pour la recherche en biotechnologie en Côte d’Ivoire (Table 2) est au-dessus de la moyenne pour la sous-région mais des efforts doivent être faits pour augmenter les ressources humaines (Table 3). La formation de PhD en cours en collaboration avec l’université d’Abidjan doit être encouragée. La création d’un espace de collaboration pour la recherche dans le domaine des biotechnologies dans la sous-région est une réponse possible à l’appel pour une coopération sous-régionale dans la recherche en biotechnologie agricole.
<table>
<thead>
<tr>
<th>Domaine de recherche</th>
<th>Matériel étudié</th>
<th>Outil de biotechnologie</th>
<th>Laboratoire responsable</th>
<th>Produit désiré</th>
<th>Stade de développement</th>
<th>Commanditaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-propagation</td>
<td>Manioc, Iglane, Ananas, Cacao (embryogenèse somatique), élæis</td>
<td>Culture de tissus</td>
<td>CNRA avec l'université de l'État de Penn pour le cacao</td>
<td>Plantules propres pour la propagation de masse</td>
<td>Pépinière pour le cacao, proche de la dissémination pour l’élæis, transféré pour les plantes à racines et tubercules comestibles</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Caractérisation du germlasme</td>
<td>Cacao</td>
<td>Caractérisation moléculaire</td>
<td>CNRA</td>
<td>Germplasme dont la composition génétique est connue</td>
<td>Pépinière</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Harmonisation des protocoles</td>
<td>Procédures d’extraction et de caractérisation de l’ADN</td>
<td>Caractérisation moléculaire</td>
<td>CNRA</td>
<td>Protocole standard</td>
<td>En cours</td>
<td>IPGRI</td>
</tr>
<tr>
<td>Caractérisation du germlasme</td>
<td>Ressources génétiques de 27 pays africains sélectionnés</td>
<td>Caractérisation moléculaire</td>
<td>CNRA avec les NARS africains</td>
<td>Ressources génétiques africaines caractérisées</td>
<td>Prévu</td>
<td>IPGRI</td>
</tr>
<tr>
<td>Phénomène de «Dry tapping panel»</td>
<td>Caoutchouc</td>
<td>Marqueurs moléculaires</td>
<td>CNRA</td>
<td>Base génétique des problèmes établie</td>
<td>En cours</td>
<td>-</td>
</tr>
</tbody>
</table>
Ghana

L’ampleur de la couverture a probablement été meilleure au Ghana car le consultant y a passé plus de temps pour l’étude. Il a passé un mois de la phase préparatoire initiale au Ghana. Le Ghana est un des pays compris dans l’étude de 2000 (Alhassan 2001). Les instituts de recherche agricole affiliés au Conseil de Recherche Scientifique et Industrielle (CSIR - Council for Scientific and Industrial Research) étudiés sont l’Institut de Recherche sur les Plantes cultivées (CRI - Crops Research Institute), l’Institut de Recherche sur l’Alimentation (FRI - Food Research Institute), le Centre des Ressources Génétiques des Plantes (PGRC - Plant Genetic Resources Center), l’Institut de Recherche sur l’Eleisis (OPRI - Oil Palm Research Institute), le Projet de Recherche sur la Noix de coco (Coconut Research Project), l’Institut de Recherche sur les Sols (SRI - Soils Research Institute) et l’Institut de Recherche Agricole Savanna (SARI - Savanna Agricultural Research Institute). En dehors des instituts basés sur le CSIR, l’Institut de Recherches Agro-Biotechnologiques et nucléaires (BNARI - Biotechnology and Nuclear Agricultural Research Institute), l’Institut Ghanéen de Recherches sur le cacao (CRIG - Cocoa Research Institute of Ghana), le Département de Botanique de l’Université du Ghana (BD/UG - Botany Department of the University of Ghana), le Département des Sciences des Plantes cultivées de l’Université du Ghana (CSD/UG Crop Science Department of the University of Ghana), le Département des Sciences des Plantes cultivées de l’Université des Sciences et de la Technologie de Kwame Nkrumah (CSD/KNUST - Crop Science Department of the Kwame Nkrumah University of Science and Technology) et le Département des Services Vétérinaires du Département du Ministère de l’Alimentation et de l’Agriculture (VSD/MOFA - Veterinary Services Department of the Ministry of Food and Agriculture) ont été étudiés. En dehors des informations fournies dans les questionnaires renvoyés, des discussions ultérieures ont été organisées avec quelques laboratoires pour clarifier les questions soulevées par les réponses du questionnaire et fournir plus de détails.

Instituts du CSIR

Les thèmes de la recherche en biotechnologie au CSIR–CRI sont l’amélioration au stress, l’amélioration du contenu nutritionnel des plantes cultivées et la caractérisation ADN pour l’amélioration et la sélection. La formation du personnel est nécessaire dans les domaines de la biologie moléculaire et de la classification des virus. Les projets en cours comprennent la culture de tissus chez la banane, le plantain et les racines et tubercules comestibles ainsi que la caractérisation de l’ADN du dolique et du manioc en collaboration avec d’autres laboratoires. Le CRI envisage l’utilisation dans le futur de la biotechnologie pour le travail de sauvetage d’embryons chez l’igname et l’arachide Bambara (Vigna subterranea), la culture d’anthères, la sélection assistée par marqueur et la sélection. Les besoins de base sont, donc, la formation, l’équipement et la construction de laboratoire. D’autres contraintes sont associées à l’habilité en biotechnologie du personnel,
particulièrement ceux possédant les connaissances en biologie moléculaire, qui n’exercent pas leur profession à cause du manque de laboratoire. Il est probable que ces personnes deviennent « rouillées » et ainsi frustrées. La mise à disposition d’un laboratoire approprié sera concomitante à la formation. Le lien entre le CSIR–CRI et les universités pour une formation de troisième cycle doit être souligné car il semble sous-utilisé. Le comité de biotechnologie du CSIR se réunit rarement. De plus, personne n’a entendu parler du programme de l’Alliance Stratégique pour la Biotechnologie dans le Développement Africain (SABRAD - Strategic Alliance for Biotechnology Research in African Development), lancée au Ghana en 2000 afin d’aider à construire une compétence pour utiliser l’agro-biotechnologie au service du développement durable en Afrique. La SABRAD devait être coordonnée par l’Université de Tuskegee aux USA. Nous avons appris ultérieurement que la SABRAD cherche des fonds pour poursuivre le programme. Dans le travail en biotechnologie au CSIR–SRI, l’accent a été mis sur la microbiologie du sol. La production d’inoculum est l’aspect privilégié. L’institut est impliqué dans l’isolement, la caractérisation et l’étude de l’efficacité des isolats. Il utilise actuellement la microscopie pour faire les caractérisations. Les contraintes les plus importantes sont le manque crucial d’équipements (rien pour la biologie moléculaire et pas de fermenteurs) et la formation scientifique du personnel dans les techniques de microbiologie moléculaire qui semblent être nécessaires rapidement. La majeure partie de l’information concernant le projet de recherche sur la noix de coco de l’OPRI (cité plus haut) et sur le jaunissement mortel (JMC) (aussi connu comme la maladie Cape St. Paul au Ghana) a été fournie par le Dr S.K. Dery, coordinateur du projet. Le projet a été établi en 1990 pour faire face au fléau du JMC de la noix de coco. La maladie n’est étiologiquement et épidémiologiquement pas connue. C’est actuellement la maladie la plus dévastatrice chez la noix de coco au Ghana et dans d’autres pays de la sous-région où elle est endémique. La maladie a fait surface au Ghana en 1932 et a détruit environ 5'500 ha de plantation de noix de coco dans les régions du centre et de l’Ouest du Ghana. Des cultivars de noix de coco résistants à la maladie dans les Caraïbes succombent lorsqu’ils sont amenés au Ghana. Des efforts concertés de recherche sur le JMC ont commencé en 1990 avec l’aide de la Commission Européenne grâce à une subvention du programme EC-STDIII. Sous l’égide du EC-STD III, le Département pour le Développement International (DfID - Department for International Development) du Royaume Uni a établi une petite unité de biologie moléculaire dans le Département de Sciences des plantes cultivées (Crop Science Department) de l’Université du Ghana afin de former des étudiants pendant que des recherches sur la maladie étaient menées. Actuellement le subventionnement est terminé mais le gouvernement français aide l’institut à construire une unité de biologie moléculaire à Sekondi, dans la région ouest du Ghana, pour combattre le JMC. Actuellement du personnel du CIRAD, qui construira le laboratoire de biologie moléculaire, travaille avec le personnel de l’OPRI dans les régions endémiques du pays. Un emprunt du gouvernement du Ghana auprès du Programme d’investissement du sous-secteur des services agricoles (AgSSIP – Agricultural Services Subsector Investment Program) de la Banque Mondiale assurera les coûts de fonctionnement du laboratoire lorsqu’il sera
construit. Pendant l’atelier international sur la noix de coco (Mombasa, Kenya, Mai 2000), le Ghana a été désigné par le bureau pour le développement de la recherche sur les plantes oléagineuses pérennes (BUROTROP – Bureau for the Development of Research on Perennial Oil Crops) comme le coordinateur de la recherche contre le JMC en Afrique. Les domaines de recherches recommandés par l’atelier comprennent l’étiologie, l’épidémiologie et la transmission du JMC, les vecteurs du JMC, la diversité des souches du JMC, le contrôle et l’endiguement du JMC, les sources et les mécanismes de résistance ainsi que la transmission du JMC par les semences ou le pollen. Le projet sur la noix de coco de l’OPRI coopère étroitement avec le Centre pour le germplasme régional à Port Bouet en Côte d’Ivoire dans son travail d’amélioration végétale. Les 35 cultivars de noix de coco testés au Ghana en provenait. Les instituts du CSIR qui manquent réellement d’infrastructure pour la biotechnologie mais qui néanmoins collaborent avec des autres institutions sont le CSIR–SRI, le CSIR–SARI et le CSIR–PGRC.

Instituts ne dépendant pas du CSIR

Perspectives

Les infrastructures de base pour la biotechnologie agricole sont habituellement faibles au Ghana (Table 2) mais la main-d’œuvre (table 3) est relativement bonne. Avec des capacités modestes, le NARS joue un rôle très actif dans la recherche en biotechnologie comme cela est mis en évidence par les activités en cours résumées dans les tables 9 et 10.
Table 9. Projets de recherche en biotechnologie végétale au Ghana

<table>
<thead>
<tr>
<th>Domaine de recherche</th>
<th>Matériau étudié</th>
<th>Outils de biotechnologie</th>
<th>Laboratoire responsable</th>
<th>Produit souhaité</th>
<th>Stade de développement</th>
<th>Commanditaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-propagation</td>
<td>Bananier, Plantain</td>
<td>Culture de tissus</td>
<td>BNARI-GAEC, CSD/UG, CSIR-CRI, BOT/UG, CSD/KNUST</td>
<td>Plantules sans virus pour la propagation de masse</td>
<td>Transfert de technologie pour le karité (CRIG) et les citrons</td>
<td>IAEA, Gatsby</td>
</tr>
<tr>
<td>Caractérisation du germplasme des racines comestibles</td>
<td>Manioc, Igsame, chou Caraïbe</td>
<td>Caractérisation moléculaire</td>
<td>CSD/UG en collaboration avec le BNARI/GAEC et le PGRC</td>
<td>Germplasme caractérisé</td>
<td>Terminé</td>
<td>FAO/IAEA</td>
</tr>
<tr>
<td>Caractérisation des Musa ssp.</td>
<td>Bananiers Plantains</td>
<td>Caractérisation moléculaire</td>
<td>BNARI en collaboration avec le CSD/UG</td>
<td>Germplasme caractérisé</td>
<td>Terminé</td>
<td>IPGRI</td>
</tr>
<tr>
<td>Isolement et caractérisation de Rhizobium</td>
<td>Inoculant</td>
<td>Fermentation</td>
<td>CSIR-SRI</td>
<td>Inoculant de Rhizobium</td>
<td>Prévu</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Protocole ADN pour le phytoplasme du Jaunissement Mortel (JMC)</td>
<td>Noix de coco</td>
<td>Marqueurs moléculaires</td>
<td>CSIR-OPRI avec le CSD/UG et le NRI-UK</td>
<td>Protocole pour le Phytoplasme</td>
<td>Terminé</td>
<td>EU STD III</td>
</tr>
</tbody>
</table>

.. Continué
<table>
<thead>
<tr>
<th>Domaine de recherche</th>
<th>Matériel étudié</th>
<th>Outils de biotechnologie</th>
<th>Laboratoire responsable</th>
<th>Produit souhaité</th>
<th>Stade de développement</th>
<th>Commanditaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification du phytoplasme JMC dans les insectes vecteurs putatifs</td>
<td>Noix de coco</td>
<td>Marqueurs moléculaires</td>
<td>CSRI-OPRI avec le CSD/UG</td>
<td>Vecteur du JMC identifié</td>
<td>En cours</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Sélection pour la tolérance à la maladie de la noix de coco et pour un meilleur rendement</td>
<td>Noix de coco</td>
<td>Marqueurs moléculaires</td>
<td>CSRI-OPRI en collaboration avec l'IACR-Rothamsted CP-CIRAD CSD/UG</td>
<td>Variétés de noix de coco tolérantes aux maladies ou à fort rendement identifiées</td>
<td>Prévu</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Caractérisation du germplasme</td>
<td>Noix de coco</td>
<td>Caractérisation moléculaire</td>
<td>CSRI-OPRI en collaboration avec l'IACR-Rothamsted CP-CIRAD, CSD/UG</td>
<td>Germplasme ou composition génétique</td>
<td>Prévu</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Micro-propagation</td>
<td>Noix de coco</td>
<td>Culture de tissus</td>
<td>CSRI-OPRI avec CP-CIRAD CSD/UG</td>
<td>Plantules pour la propagation de masse</td>
<td>Prévu</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Contrôle biologique</td>
<td>Noix de coco</td>
<td>Fermentation ou autres approches</td>
<td>CSRI-OPRI avec CP-CIRAD CSD/UG</td>
<td>Agents de contrôle biologique</td>
<td>Prévu</td>
<td>Gouvernement</td>
</tr>
</tbody>
</table>

../ Continué
<table>
<thead>
<tr>
<th>Développement de sondes pour le diagnostic</th>
<th>Plantain, Noix de coco</th>
<th>Marqueurs moléculaires</th>
<th>CSD/UG en collaboration avec IITA et NARS</th>
<th>Sondes de diagnostic</th>
<th>Essais sérologiques monoclonaux développés, Diagnostics PCR développés</th>
<th>Gouvernement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Détermination des sous-espèces de micro-organismes pour la fermentation des aliments</td>
<td>Aliments fermentés : Maïs, Manioc, Soja, (Dawadawa), Vin de palme, (vinaigre)</td>
<td>Fermentation</td>
<td>CSIR-FRI en collaboration avec le réseau africain des aliments fermentés</td>
<td>Culture de départ (levain)</td>
<td>Terminé</td>
<td>DANIDA</td>
</tr>
<tr>
<td>Dégradation des mycotoxines</td>
<td>Aflatoxine dans les aliments</td>
<td>Fermentation</td>
<td>CSIR-FRI</td>
<td>Enzyme microbienne</td>
<td>En cours</td>
<td>EU</td>
</tr>
<tr>
<td>Caractérisation pour la résistance aux maladies et l’amélioration moléculaire</td>
<td>Cacao</td>
<td>Marqueurs moléculaires et introgression</td>
<td>CRIG</td>
<td>Matériel de plantation résistant aux maladies</td>
<td>En cours</td>
<td>IAEA</td>
</tr>
<tr>
<td>Caractérisation de l’ADN</td>
<td>Maïs</td>
<td>Caractérisation moléculaire</td>
<td>CSIR-SARI en collaboration avec le WECAMAN</td>
<td>Germplasme dont la composition génétique est connue</td>
<td>Prévu</td>
<td>USAID</td>
</tr>
</tbody>
</table>
Table 10. Projets de recherche en biotechnologie animale au Ghana.

<table>
<thead>
<tr>
<th>Domaine de recherche</th>
<th>Matériel étudié</th>
<th>Outils de biotechnologie</th>
<th>Laboratoire responsable</th>
<th>Produit souhaité</th>
<th>Stade de développement</th>
<th>Commanditaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Développement de diagnostics</td>
<td>Cowdriose, Maladie de Newcastle</td>
<td>Culture de tissus (Cowdriose seulement), anticorps monoclonaux</td>
<td>VSD en collaboration avec l'Institut Noguchi dans UG</td>
<td>Kit de diagnostic</td>
<td>En cours</td>
<td>Gouvernement</td>
</tr>
</tbody>
</table>
Mali

Comme le Burkina Faso, le Mali est un pays qui n’avait pas été étudié en 2000 (Alhassan 2001). La majorité de la recherche agronomique et en biotechnologie agricole au Mali se fait sous l’égide du Ministère du Développement Rural (MRD - Ministry of Rural Development). Les institutions importantes sont l’IER (Institut d’Economie Rurale – Institute of Rural Economy) qui offre des programmes variés pour le sorgho, la nutrition, la technologie alimentaire, le bétail et la sylviculture; le LCV (Laboratoire Vétérinaire Central - Central Veterinary Laboratory) et le DGRC (Bureau Principal de Réglementation et de Contrôle - General Headquarters for Regulations and Control) qui traite des questions de bio-sécurité. Quelques recherches agronomiques sont réalisées sous l’égide du Ministère de l’éducation. Ce sont les IPR/IFPRA (Institut Polytechnique Rural et Institut de Recherches Appliquées - Rural Polytechnic Institute and Institute of Applied Research) qui abritent le laboratoire de biotechnologie à Katibougou et le LBMA (Laboratoire de Biologie Moléculaire Appliquée - Applied Molecular Biology Laboratory) du FAST (Faculté des Sciences et Technologies - Faculty of Science and Technology) de l’université du Mali. L’auteur a eu le privilège de participer activement à un atelier de travail sur la biotechnologie, la bio-sécurité et la propriété intellectuelle financé par Syngenta, la Fondation Rockefeller et l’USAID (4–6 Juin 2002). L’atelier a aidé à définir un plan d’action pour le développement de la recherche en biotechnologie et de la bio-sécurité pour le Mali. Cet atelier d’actualité a précédé le tour du Mali.

Laboratoire de Biotechnologie à Katibougou

Ce laboratoire a été développé grâce au financement de l’Agence Internationale pour l’Energie Atomique (International Atomic Energy Agency - IAEA). Il est bien équipé pour la culture de tissus. Le chef du laboratoire est le Dr Bretaudeau, un sélectionneur végétal. La majorité du travail de ce laboratoire est de la culture de tissus mais un travail de recherche sur les mutations utilise les radiations. Tout l’équipement pour la culture de tissus a été financé par l’IAEA (Vienne). Le laboratoire effectue des cultures de tissus pour produire du matériel de plantation de la pomme de terre destiné à la sous-région. La demande pour ce type de matériel est en augmentation. Le laboratoire mène aussi des recherches sur la culture d’anthères chez le sorgho. Les progrès dans ce travail sont gênés par l’accumulation de polyphénols chez le sorgho qui rendent difficile l’andrognèse. Par mutation induite ou par amélioration traditionnelle, le laboratoire a développé 16 cultivars de sorgho qui ont été enregistrés au catalogue national et mis à la disposition des fermiers. Le laboratoire a prévu de commencer la production de culture de tissus de bananiers prochainement.
Laboratoire de biologie moléculaire appliquée (LBMA)

Le Dr Ousmane Koita est la personne de contact pour le Laboratoire de biologie moléculaire appliquée (LBMA) du FAST à l’Université du Mali. Le laboratoire travaille actuellement sur les maladies, c.-à-d., la malaria, la trypanosomiase humaine et l’onchocercose. Un travail en biotechnologie agricole devrait commencer très prochainement. Actuellement, la formation de post-doctorat se fait en biologie moléculaire pour la santé, mais le laboratoire est prêt à avoir une collaboration avec les instituts de recherche agronomique pour offrir une formation en agro-biotechnologie. Le FAST va ouvrir son équipement au personnel de l’IER, ce qui leur permettra de travailler en biologie moléculaire et de former leur personnel dans ce domaine.

Laboratoire vétérinaire central (LCV)

Le chef de la division de recherche et de diagnostic du laboratoire vétérinaire central (LCV) est le Dr Mamadou Niang. Le laboratoire a été construit il y a plus de trente ans grâce à un financement de l’USAID. Les différentes divisions sont l’administration et les services de soutien, la production de vaccins, la recherche et le diagnostic. Dix laboratoires spécialisés prêtent leur concours aux programmes de recherche. Le LCV produit neuf types de vaccins principalement pour les ruminants. Il est prévu de produire des vaccins pour les volailles dans le futur. Ses partenaires sont l’IER, la FAO, l’UNDP, l’Union Européenne (en particulier le CIRAD), l’USAID et l’IAEA. Les sujets de recherche dans lesquels on utilise la biotechnologie sont le diagnostic grâce au PCR dans la pleuropneumonie bovine contagieuse (CBPP), les nuisibles des petits ruminants (PPR), la fièvre aphteuse (FMD) et la peste bovine. Il est prévu de produire un vaccin recombinant contre le CBPP. Des études en cours ont pour but de produire un vaccin contre la pasteurellose des ruminants. La distribution de 20 à 25 millions de doses des différents types de vaccins dans la sous-région est prévu en 2002. Dans un ordre de priorité croissant, les besoins du LCV sont la formation, l’équipement et les bâtiments. Le LCV apparaît comme un immense complexe pour le diagnostic et la production de vaccins recombinants. De plus, un laboratoire de toxicologie travaille en ce moment sur la présence de résidus de pesticides sur les fruits et les légumes dont certains sont destinés à l’exportation. Le laboratoire, construit avec le soutien financier de l’USAID, a aussi fourni une formation en toxicologie pour l’équipe. Il est bien équipé mais il semble congestionné.

L’ Institut pour l’Economie Rurale (IER)

C’est la plus grande institution nationale de recherche agronomique au Mali. L’IER a très peu de compétences en biologie moléculaire actuellement et le personnel
formé en biotechnologie est rare. Toutes les recherches incluant de la biotechnologie sont faites en collaboration avec des institutions externes. Le programme de recherche en biotechnologie (détermination de marqueurs moléculaire pour la résistance Eurystylus marginatus (un insecte qui sucre les grains de sorgho), la tolérance à la sécheresse, la caractérisation moléculaire du sorgho, l’infestation par la moisissure du grain et la sensibilité du sorgho aux photopéridiostes) actuellement en cours se fait en collaboration avec l’université A & M du Texas. Le travail de collaboration ci-dessus comprend des maliens qui sont des étudiants de troisième cycle ou de post-doctorat à l’université A & M du Texas. Les principales contraintes pour la biotechnologie à l’IER sont le manque d’infrastructure de laboratoire et de personnel formé. Deux sélectionneurs sont en cours de formation aux techniques moléculaires à l’université A & M du Texas. Les projets de recherche en cours ou prévus au Mali sont résumés dans les tables 11 et 12. Ils se rapportent à la micro-propagation dans le secteur végétal et au diagnostic et à la production de vaccins dans le secteur animal.

Perspectives

En ce qui concerne les capacités en biotechnologie, le besoin le plus crucial pour le Mali (comme pour le Burkina Faso) est l’amélioration de l’infrastructure des laboratoires qui est actuellement faible (Table 2) et du savoir-faire de la main d’œuvre en biologie cellulaire et moléculaire. La force de la main d’œuvre est similaire à celle de la Côte d’Ivoire mais elle est plus faible que dans le reste des pays de la sous-région (table 3). L’IER, qui est la plus grande institution agronomique du pays, semble la plus faible tant pour la main d’œuvre que pour les infrastructures de laboratoire. Cependant, il est nécessaire d’harmoniser la recherche en biotechnologie dans les différentes institutions du pays en adoptant, comme mesure provisoire, un accord de partage des coûts. Une suggestion de scénario serait de rassembler les ressources en biologie moléculaire et en culture de tissus du LCV, de l’IER, du FAST/LMBA et de l’IPR Katibougou au Mali, mais on sera confronté au problème potentiel de monopole de l’institution hôte. Toutes les institutions appropriées doivent avoir un accès non-restreint à un tel laboratoire central dans le cadre de lignes directrices restant à établir.

Une idée de collaboration similaire soulevée lors de l’atelier national de biotechnologie de 2000 n’a pas abouti à un consensus pour cette raison. Les problèmes humains à cet égard sont sérieux. La transparence est fondamentale pour une telle structure de collaboration. Un mémorandum réalisable de compréhension soutenu par une coercition gouvernementale devra être établi pour apaiser les peurs de l’IER, la plus grande des NARS, qui pourrait être très désireuse de posséder ses propres installations. Comme la capacité est arrivée à un point où un agrandissement est nécessaire, de nouvelles infrastructures pourraient être créées à l’IER. Commencant avec la culture de tissus, une série de formations accélérées de courte durée peuvent être créées pour les techniciens et les chercheurs susceptibles d’utiliser les outils de biotechnologie dans leurs recherches. De telles
formations peuvent être proposées au Mali ou dans d’autres institutions de la sous-région comme celles du Cameroun, de la Côte d’Ivoire, du Ghana, du Sénégal, de l’IITA, et du WARDA (seulement pour la culture d’anthère de riz). Pour le travail de biotechnologie en collaboration au Mali, il a été suggéré que le FAST, le laboratoire de culture de tissus de Katibougou et le LCV procurent des paillasses pour le travail en biotechnologie de l’IER. Pour les cultures de tissus, l’IER peut avoir des infrastructures en dur comme des salles de sélection pour commencer. L’IER peut aussi avoir un équipement pour la fermentation puisque ces infrastructures, autres que le laboratoire de production de vaccin, ne sont pas encore établies au Mali. Il pourrait les utiliser dans son travail sur les rhizobiums, les mycorhizes et la fermentation des aliments.
Table 11. Projets de recherche en biotechnologie végétale au Mali.

<table>
<thead>
<tr>
<th>Domaine de recherche</th>
<th>Matériel étudié</th>
<th>Outils de biotechnologie</th>
<th>Laboratoire responsable</th>
<th>Produit souhaité</th>
<th>Stade de développement</th>
<th>Commanditaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-propagation</td>
<td>Pomme de terre</td>
<td>Culture de tissus</td>
<td>IPRI/IFPRA</td>
<td>Mini- et micro-tubercules</td>
<td>Commercialisés</td>
<td>SIC International</td>
</tr>
<tr>
<td>Amélioration de la qualité des grains</td>
<td>Sorgho</td>
<td>Culture d’anthère</td>
<td>IPRI/IFPRA</td>
<td>Sorgho amélioré</td>
<td>En cours</td>
<td>(France)</td>
</tr>
<tr>
<td>Fermentation des jus de fruit</td>
<td>Mangue</td>
<td>Fermentation</td>
<td>IPRI/IFPRA</td>
<td>Vinaigre</td>
<td>En cours</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Identification de marqueurs ADN pour les stress biotiques et abiotiques</td>
<td>Sorgho</td>
<td>Marqueurs moléculaires chez le sorgho pour la résistance à Striga, aux punaises du sorgho, à la sécheresse, à la sensibilité à la photopériode, Moisissure du grain</td>
<td>IER</td>
<td>Marqueurs variés</td>
<td>Prévu</td>
<td>Gouvernement</td>
</tr>
</tbody>
</table>
Table 12. Projets de recherche en biotechnologie animale au Mali.

<table>
<thead>
<tr>
<th>Domaine de recherche</th>
<th>Matériel étudié</th>
<th>Outils de biotechnologie</th>
<th>Laboratoire responsable</th>
<th>Produit souhaité</th>
<th>Stade de développement</th>
<th>Commanditaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contrôle du CBPP</td>
<td>Vaccin</td>
<td>Fermentation</td>
<td>LCV</td>
<td>Vaccin recombiné</td>
<td>En cours</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Diagnostic moléculaire de diverses maladies</td>
<td>Protocoles</td>
<td>Marqueurs moléculaires</td>
<td>LCV</td>
<td>Kits de diagnostic</td>
<td>En cours</td>
<td>Gouvernement</td>
</tr>
</tbody>
</table>
Desseins dans le domaine de la biotechnologie de l’Agence américaine pour le développement international (USAID - United States Agency for International Development)

L’USAID va démarrer un programme de construction de capacités dans le domaine de la biotechnologie agricole au Mali. L’auteur a, par conséquent, été prié de collaborer avec le bureau de l’USAID au Mali pour discuter des domaines possibles d’intervention après sa visite du pays. Ceci est une anticipation d’une requête officielle d’assistance des autorités maliennes. La personne de contact de l’USAID au Mali est le Dr Dennis McCarthy, qui est le chef d’équipe du programme pour une croissance économique durable au Mali. Il a présenté un cadre pour le programme pour une croissance économique durable et a indiqué qu’une augmentation des revenus pour des sous-secteurs agricoles sélectionnés au Mali était un de ses buts. Pour réaliser cela, le cadre indique trois résultats intermédiaires qui devront être atteints : une augmentation dans (i) la production de produits agricoles choisis dans des zones sélectionnées, (ii) le commerce de produits agricoles choisis et (iii) l’accès aux finances. Le matériel sélectionné, dont la production doit augmenter, est le riz, l’alimentation animale, les fruits et les légumes. Quelques-unes des interventions clés proposées se situent dans les domaines de la formation, de l’accès aux intrants agricoles, le développement de la technologie et le transfert et la construction de capacités. Pour réaliser l’augmentation attendue dans le volume du commerce, la plupart des marchandises, par ex. les céréales, le cheptel, les fruits et les légumes devront être commercialisées dans la sous-région.

Le commerce et les politiques environnementales et les qualités nécessaires des produits pour entraîner dans le commerce devront être revisitée et de nouvelles politiques introduites si cela est approprié. Les activités clés pour promouvoir le commerce sous-régional comprennent, entre autres, l’information des marchés, la construction de capacités pour un système de gestion informatisé (MIS) et la surveillance de la sécurité des aliments et des résidus de pesticides. Autant que possible, les barrières au commerce des denrées agricoles devront être enlevées. L’antenne maliene de l’USAID est particulièrement intéressée par une étude détaillée des réglementations sur les semences existantes pour faciliter le commerce. Les réglementations phytosanitaires doivent être examinées pour faciliter le commerce des semences, les réglementations existantes pouvant être trop rigoureuses. Les attributions de l’IPR doivent aussi être comprises dans cette étude détaillée car elles sont en rapport avec le mouvement des nouveaux cultivars. Selon le chef de l’équipe, le bureau de l’USAID au Mali va participer à la construction des capacités en biotechnologie en rapport avec les domaines cités ci-dessus. Il semblerait à l’auteur que ces activités pourraient bénéficier d’une intervention des biotechnologies au Mali si les capacités institutionnelles pour la biotechnologie agricole étaient renforcées. Par exemple, pour augmenter la production dans les secteurs clés énumérés comme les fruits et les légumes, la culture de tissus permettrait d’augmenter la quantité de matériel de plantation de qualité pouvant être cultivé sous irrigation. Les capacités pour les espèces choisies qui bénéficieraient des cultures de tissus sous irrigation (les bananiers, les oignons et les pommes de terre) se développent rapidement au
laboratoire de biotechnologie de Katibougou. Pour valoriser la production excédentaire de mangues qui ne peut être vendue, des recherches sont en cours pour isoler des cultures de bactéries qui convertiraient ces excédents en vinaigre. Les institutions qui font de la recherche et pilotent ces étapes manquent de bio-réacteurs et des outils moléculaires qui faciliteraient les programmes en cours énumérées dans les grilles de projets de recherche en biotechnologie pour le Mali de ce rapport. Grâce à la culture d’anthères, des cultivars de riz et de sorgho peuvent être développés et rentreront dans le commerce régional.

Jusqu’ici, le développement de plantes résistantes à des mauvaises herbes parasites comme Striga et des insectes nuisibles n’a été que trop lente. Il pourrait être accéléré en utilisant les marqueurs moléculaires pour identifier les cultivars résistants. Eventuellement, des insectes nuisibles et les maladies tenaces qui limitent le volume de marchandises affectées au commerce devraient être modifiés par la création de plantes cultivées GM. Un programme qui utilise les techniques moléculaires afin d’identifier les cultivars de sorgho résistants à la sécheresse et aux insectes nuisibles se déroule à l’IER en collaboration avec l’université A & M du Texas, USA. L’IER manque cruellement de capacités humaines et matérielles pour utiliser ce nouvel outil efficacement. Il est souhaitable de fournir aux deux équipes de biologie moléculaire de l’IER sous forme d’une formation aux USA, les outils avec lesquels ils pourraient travailler localement pendant leur formation puis de retour dans leur pays. A cause de l’inadéquation de la formation et du manque d’outils de laboratoire mis au point pour un diagnostic rapide, le problème de l’implémentation efficace des réglementations phytosanitaires existantes est plus sérieux que celui de la réglementation obsolète. Et qui plus est, le Mali tout seul ne peut pas modifier drastiquement les protocoles de quarantaine existants pour les plantes sans tenir compte des normes du Conseil Phytosanitaire Inter-Africain dépendant de l’Union Africaine qui sont à son tour liée au cadre de la Convention Internationale de Protection des Plantes qui gouverne le mouvement sous-régional du matériel végétal. L’USAID peut aider à obtenir des procédures de quarantaine efficaces qui utilisent les bons outils en finançant la formation des équipes. Avec l’introduction des OGM dans le commerce mondial, aider le Mali non seulement à développer son cadre de bio-sécurité mais aussi à être capable de l’implémenter est un pas dans la bonne direction. L’implémentation de n’importe quel protocole de bio-sécurité demandera à priori des compétences en biotechnologie, ce qui demande une éducation au Mali. En résumé, l’USAID peut aider à construire une capacité au Mali par:

- Une aide pour harmoniser les cadres institutionnels pour la biotechnologie comme cela est suggéré plus haut par la concentration des ressources en
biotechnologie au Mali. Quelques aides de l’USAID dans l’approvisionnement et la localisation des ressources pour une utilisation efficace seront nécessaires.

- Une aide pour établir le document de politique concernant la biotechnologie et la bio-sécurité en se basant sur le rapport de l’atelier de juin 2002 sur la biotechnologie, la bio-sécurité et la propriété intellectuelle.

- Une série d’ateliers sur la bio-sécurité y compris une formation pratique sur la mise en œuvre des protocoles de bio-sécurité ainsi qu’une sensibilisation aux questions de la propriété intellectuelle dans la protection des germplasmes et le commerce.

- D’autres secteurs pour le soutien de l’USAID peuvent être déterminés à partir des contraintes énumérées sous les institutions au Mali.

Des discussions avec le représentant de Syngenta au Mali, le Dr Oumar Niangado, indiquent que Syngenta serait prêt à collaborer avec l’USAID pour offrir la construction de capacités en biotechnologie au Mali. Syngenta, la fondation Rockefeller et l’USAID ont financé l’atelier de juin 2002 sur les biotechnologies au Mali.

Nigeria

Lors de l’étude détaillée de 2000, 17 institutions de recherches au Nigeria ont été contactées. Cette fois, cependant, seules 7 institutions de recherches ont pu être contactées mais elles forment un échantillon représentatif des institutions du système national de recherche en agro-biotechnologie. Les institutions étudiées sont le Laboratoire de pointe de Biotechnologie (BAL) qui se trouve à l’intérieur du complexe Sheda de Sciences et de Technologie (SHESTCO) à Abuja, l’Institut National de Recherche Vétérinaire à Vom et à Ibadan, le centre National des Ressources Génétiques et de Biotechnologie (NACGRAB), l’Institut de Recherche et de Formation Agronomique (IAR&T), le Service National de Quarantaine des Plantes (NPQS), l’Institut de Recherche sur le Cacao du Nigeria (CRIN) et l’Institut National d’Horticulture (NIHORT). En plus du questionnaire, des visites ont été offertes au NPQS et au BAL ainsi qu’aux fonctionnaires en rapport avec le programme Biotechnologie dans le pays.

NPQS

Le NPQS est un équipement unique au Nigeria et dans la sous-région en ce qui concerne son utilisation comme outil de biotechnologie, c.-à-d., la culture tissus pour réaliser les services de quarantaine des plantes. La personne en charge du laboratoire est M. G.O. Adejare. Par rapport à l’étude détaillée de 2000, il y a eu une augmentation de l’activité pour la sélection de matériel végétal importé multiplié végétativement. Un tel matériel arrive soit sous forme de matériel provenant de culture de tissus soit comme une plante entière. Dans le cadre du service, les importateurs paient une taxe pour couvrir les coûts du service rendu : rendre le
matériel propre s’il est trouvé contaminé ou sauver du matériel végétal mourant avant sa libération. Une partie d’un tel matériel allait aussi dans la banque de gène in vitro pour augmenter la quantité et la diversité du germplasme stocké qui peut être libéré sur demande. Du point de vue des activités de quarantaine végétale, une conscience croissante du besoin en matériel de culture de tissus dans le pays apparaît. Les contraintes profondes liées aux fréquentes coupures d’électricité et au faible voltage perturbent encore le NPQS.

L’Institut National de Recherches Vétérinaires (NVRI)

A cause de contraintes de temps, la visite souhaitée à L’Institut National de Recherches Vétérinaires à Vom n’a pas pu avoir lieu. Le questionnaire retourné a révélé une pénurie de personnel formé dans les techniques moléculaires. Le seul employé recruté dans ce domaine est en train de faire une formation post-doctorale. L’équipement du laboratoire est aussi insatisfaisant. Il nécessitera un ré-aménagement et un ré-équipement.

SHESTCO

Le laboratoire de pointe de Biotechnologie (BAL)

Le BAL est un composant du cadre national pour le développement des biotechnologies répertorié dans le document de politique nationale des biotechnologies de 2001. Le Prof. G.H. Ogbadu est le directeur de ce laboratoire dont la mission est de « fournir un centre d’excellence pour la recherche et la formation en biotechnologie et en génie génétique ». Les objectifs sont de promouvoir les activités scientifiques qui vont conduire au développement pacifique des utilisations des biotechnologies et du génie génétique pour aider au renforcement des capacités nationales en sciences et technologie dans le domaine des biotechnologies et du génie génétique, de servir de forum pour l’échange
d’information, d’expériences et de savoir-faire entre les scientifiques dans le domaine de la biotechnologie et du génie génétique et d’établir une étroite collaboration avec le secteur privé, les utilisateurs finaux de l’effort de recherche et de développement. Le plan d’action à court-terme (2-3 ans) est de se concentrer sur la culture de tissus pour les plantes cultivées alimentaires ou les arbres cultivés, la bio-informatique (collection et traitement des données), la fermentation (production de levure boulangère, production d’antibiotique, production industrielle d’enzyme), la production de médicaments à base de plantes pour la santé y compris les alicaments et les arômes alimentaires, la formation ainsi que d’établir des contacts. Le plan à moyen terme (4-10 ans) est de se concentrer sur la technologie de transformation des plantes pour les plantes cultivées à usage agricole ou industriel (par ex. introduction de gène de gluten dans le manioc, enrichissement en nutriments des plantes alimentaires ou bio-fortification), génomique, bio-remédiation et outils moléculaires pour la caractérisation des plantes. Le plan à long terme comprend la génomique et la protéomique, le diagnostic et du travail ultérieur en transformation. Il y a une forte collaboration avec l’université Rutgers aux USA et les industries de biotechnologie dans le monde.

Perspectives

La main-d’œuvre nigérienne en biotechnologie révélée par l’étude actuelle (Table 3) est une grosse sous-estimation de la situation actuelle sur le terrain. Ceci est dû au fait que cette étude a échantillonné bien moins d’institutions et que la plupart d’entre elles ne faisaient pas partie du système universitaire, qui abrite la main-d’œuvre affectée à la biotechnologie pour le Nigeria. Aucune main d’œuvre disponible a une formation en biotechnologie (Table2). Cependant, en terme d’activité de recherche et d’infrastructure pour la recherche, les résultats de l’étude détaillée sont le reflet du paysage national. Comme pour la plupart des pays de la sous-région, les facilités en culture de tissus sont relativement bonnes mais celles pour la biologie moléculaire sont terriblement inadéquates et probablement les pires dans la sous-région. La recherche en agro-biotechnologie résumée est dominée par le travail de culture de tissus sur les plantes (Table 13) et la production classique des vaccins (Table 14).

Le Nigeria a récemment montré un intérêt pour l’utilisation des biotechnologies en tant qu’outil pour améliorer le développement agricole et socio-économique général. La politique de développement des biotechnologies et les lignes directrices pour la biotechnologie ont été esquissées. Les institutions chargées de promouvoir la recherche en biotechnologie et son développement ainsi que des liens avec les chefs d’entreprises ont aussi été établis.
Table 13. Projets de biotechnologie végétale au Nigeria.

<table>
<thead>
<tr>
<th>Domaine de recherche</th>
<th>Matériau étudié</th>
<th>Outils de biotechnologie</th>
<th>Laboratoire responsable</th>
<th>Produit souhaité</th>
<th>Stade de développement</th>
<th>Commanditaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-propagation</td>
<td>Fruits cultivés, arbres forestiers, bananier, plantain, ananas</td>
<td>Culture de tissus</td>
<td>BAL-SHESTCO NIHORT (bananier, plantain, ananas)</td>
<td>Plantules pour la propagation de masse</td>
<td>Protocoles (arbres forestiers)</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Conservation de germplasme in vitro</td>
<td>Musa, fruit du chou Caraïbe, plantes médicinales, le «Ndolet» (Vernonia amygdalina), espèces de plantes en danger</td>
<td>Culture de tissus</td>
<td>NACGRAB</td>
<td>Plantules in vitro</td>
<td>Terminé (Musa ssp. avec l'aide de l'IITA, chou Caraïbe, fruit de la passion) développement de protocole (plantes médicinales, espèces en danger)</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Variation somaclonale</td>
<td>Kenaf (ou chanvre de Madras), cacao, café, anacadié, noix de Kola, thé</td>
<td>Culture de tissus</td>
<td>IAR&T/OAU (Kenaf seul) CRIN</td>
<td>Matériel végétal uniforme</td>
<td>En cours</td>
<td>Gouvernement STCP/IITA pour les plantes prescrites par le CRIN</td>
</tr>
<tr>
<td>Double-haploïde</td>
<td>Maïs</td>
<td>Culture d’anthères</td>
<td>IAR&T/OAU</td>
<td>Hybrides stables</td>
<td>En cours</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Domaine de recherche</td>
<td>Matériel étudié</td>
<td>Outils de biotechnologie</td>
<td>Laboratoire responsable</td>
<td>Produit souhaité</td>
<td>Stade de développement</td>
<td>Commanditaire</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------------</td>
<td>--------------------------</td>
<td>-------------------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Sélection et isolement des souches locales de levure</td>
<td>Levure</td>
<td>Fermentation</td>
<td>BAL-SHESTCO</td>
<td>Souches locales de levure de boulanger à fort potentiel</td>
<td>Caractérisation</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Production industrielle d’enzymes</td>
<td>Enzymes</td>
<td>Fermentation</td>
<td>BAL-SHESTCO</td>
<td>Enzymes industrielles pour l'industrie alimentaire</td>
<td>Isolément et caractérisation</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Contrôle biologique des nuisibles et des maladies</td>
<td>Arbres cultivés</td>
<td>Nombreuses techniques classiques</td>
<td>CRIN</td>
<td>Agents de contrôle biologique</td>
<td>Prévu</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Production d'engrais biologique et de bio-gaz</td>
<td>Résidus de plantes cultivées</td>
<td>Fermentation (classique)</td>
<td>CRIN</td>
<td>Source d'énergie</td>
<td>Prévu</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Services phytosanitaires</td>
<td>Matériel végétatif importé y compris manioc, pomme de terre, oignon, patate douce</td>
<td>Culture de tissus</td>
<td>PQS</td>
<td>Matériel végétal propre</td>
<td>Service courant</td>
<td>Gouvernement</td>
</tr>
</tbody>
</table>
Table 14. Projets de biotechnologie animale au Nigeria.

<table>
<thead>
<tr>
<th>Domaine de recherche</th>
<th>Matériel étudié</th>
<th>Outils de biotechnologie</th>
<th>Laboratoire responsable</th>
<th>Produit souhaité</th>
<th>Stade de développement</th>
<th>Commanditaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production de vaccins</td>
<td>Vaccins</td>
<td>Fermentation (classique)</td>
<td>NVRI – Vom</td>
<td>Vaccins</td>
<td>En cours</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Diagnostic</td>
<td>Protocole de diagnostic</td>
<td>Marqueurs moléculaires</td>
<td>NVRI – Vom</td>
<td>Kits de diagnostic</td>
<td>Prévu</td>
<td>Gouvernement</td>
</tr>
</tbody>
</table>
Ces interventions politiques seront traitées plus en détail autre part dans ce rapport. Malgré cela, le niveau du soutien à la main d’œuvre disponible et à l’infrastructure pour permettre au Nigeria de réaliser son rêve est faible. L’USAID a répondu à la demande d’aide du Nigeria pour construire une compétence à utiliser les outils de développement la biotechnologie moderne dans des domaines pertinents. La mission de l’USAID au Nigeria a répondu à cette demande et a esquissé un programme avec les objectifs suivants:

- Construire une capacité de recherche scientifique et institutionnelle en agro-biotechnologie en développant une technologie et une formation en collaboration avec des institutions américaines ou internationales.
- Construire une capacité pour établir et implémenter des options de stratégie de recherche et de transfert de technologie efficace, tant au niveau institutionnel que national.
- Accéder à la propriété des outils de biotechnologie ; promouvoir et gérer l’utilisation de la technologie.
- Promouvoir la compréhension dans un groupe divers de partenaires dans les domaines pour renforcer le développement et la dissémination de la technologie et assurer l’application sûre et judicieuse de la biotechnologie.

Ceci dans le but de maximiser les bénéfices potentiels tout en évitant le plus possible les effets négatifs sur la santé humaine et l’environnement. Les composants du programme sont le développement de la technologie et la construction de capacités. L’USAID va soutenir le développement de la technologie en collaboration entre l’IITA et les institutions nigériennes (institutions de recherche, universités et secteur privé) ce qui permettra d’intégrer les outils de biotechnologie pour soutenir l’agriculture. Tant la biotechnologie animale que la biotechnologie animale seront concernées.

En ce qui concerne la construction de capacité, le développement et la direction de cours et d’ateliers ainsi que les formations courtes, pratiques via un apprentissage sur le terrain seront privilégiés. Ce programme visera aussi les activités de sensibilisation et d’élargissement du cercle d’utilisateurs des biotechnologies afin de sensibiliser le public dans son ensemble sur le thème des biotechnologies. Une information impartiale sur la biotechnologie sera donnée. Enfin et surtout, le programme travaillera sur la politique et la réglementation de la bio-sécurité grâce aux capacités d’infrastructures institutionnelles et le développement des ressources humaines, qui seront renforcés pour aider à l’implémentation de lignes directrices de bio-sécurité nationales. L’IITA va assurer le rôle de direction dans l’aide à la construction de capacités nécessaires et l’USAID, le financement. Il est clair, d’après l’étude actuelle, que l’USAID devra canaliser les ressources dans la formation à tous les niveaux de la biotechnologie, spécialement dans l’utilisation des techniques de biologie moléculaire pour la caractérisation des plantes, le diagnostic et plus tard la transformation génétique. L’utilisation des outils moléculaires modernes dans le secteur animal est vraiment nécessaire et comme les capacités ne sont pas actuellement disponibles au Nigeria, le projet de collaboration avec l’IITA en tant qu’agence de réalisation, sous-traitera avec l’ILRI pour résoudre les questions de biotechnologie du bétail au moment et de la manière appropriée. L’aide
de l’USAID sera nécessaire pour construire rapidement une capacité locale de transformation des plantes afin d’obtenir un cas pratique qui servira à tester l’application des lignes directrices de bio-sécurité. Toutes les formations de pointe en biologie moléculaire devront inclure la résolution d’un problème local dans le schéma de formation. Bien que les capacités de culture de tissus au niveau des institutions de recherche progressent, il n’en est pas de même pour le secteur privé qui doit être aidé pour développer la compétence de commercialiser la technologie.

Sénégal

ISRA-IRD

La personne de contact pour un projet ISRA-IRD est le Dr Mamadou Gueye, qui est le chef de l’unité de microbiologie. C’est un laboratoire de microbiologie des sols principalement intéressé par la fixation de l’azote. Les souches de Rhizobium les plus compétitives par rapport aux rhizobiums indigènes sont sélectionnées. Le laboratoire utilise les sondes ADN pour vérifier que les souches de rhizobiums introduites sont vraiment celles qui font des nodules. Ils comparent les produits PCR des souches de rhizobiums introduites avec les souches indigènes isolées des nodules. L’inoculum de rhizobium est couramment distribué aux fermiers pour la production du haricot Phaseolus. Le haricot Phaseolus est destiné à l’exportation. La tourbe est le vecteur. Le laboratoire produit aussi un inoculum liquide pour des autres arbres de la famille des légumineuses (Gliricidia, Leucaena et Acacia nilotica entre autres). Les isolats de rhizobium doivent être à la fois efficaces pour la fixation d’azote et compétitifs contre les souches de rhizobiums indigènes. Actuellement le thème central de la fixation d’azote concerne tous les micro-organismes autour des racines, c.-à-d., la rhizosphère. Le laboratoire ISRA-IRD-UCAD est un centre d’excellence pour la fixation biologique de l’azote (BNF) dans la sous-région. C’est aussi un UNESCO-MIRCEN (Centre de Ressources de Micro-organismes). Par le
MIRCEN, il offre des bourses universitaires pour les scientifiques invités dans la sous-région. Le laboratoire moderne de culture de tissus voisin du laboratoire de microbiologie était temporairement fermé par manque de capital ouvert pour faire face au fonctionnement essentiel.

LNERV

L’unité de biotechnologie animale (LNERV) se concentre sur l’insémination artificielle des chevaux et du bétail, le transfert d’embryon, qui en est à son stade expérimental, et la production de vaccins, tant inactifs que vivants. Il souhaite passer à la production de vaccin recombinant en collaboration avec le CIRAD et l’Université de Californie à Davis. Les candidats pour une production de vaccin recombinant sont l’anthrax et le charbon symptomatique (Clostridium chauvoei). Le LNERV développe un kit de diagnostic pour la peste bovine en utilisant des outils moléculaires (anticorps monoclonaux). Le Dr Mamady Koné, un microbiologiste/biologiste moléculaire, est le chef de l’unité de microbiologie du LNERV. L’unité de développement de vaccins et le travail de diagnostic de maladies virales sont dirigés par le Dr Yaya Thiongane. Environ 5000 têtes de bétail, pour la production de lait, ont été inséminées par le gouvernement pendant la période 1999-2000. Ils ont utilisé le sperme de vaches de Holstein, de Jersey et de Montbéliard dans la campagne d’insémination artificielle. La campagne a été lancée comme celle de vaccination. Le Ministère de l’Agriculture et du bétail et des animaux de basse-cour a supervisé la campagne. L’ISRA surveillera le résultat de l’insémination. Un projet de la FAO traitant de la caractérisation des ressources génétiques du bétail et des animaux de basse-cour ainsi que l’établissement d’une banque de gène sur pied est en cours. La banque de gène est localisée à Sangalkamp près de Dakar et la construction du camp est en cours. Le Sénégal est un membre actif du BIONET INTERNATIONAL – le Réseau mondial pour la Taxonomie. La branche d’Afrique de l’Ouest est le WAFRINGET. Le BioNET est une création du Centre International pour l’Agriculture et les Bio-Sciences (CABI), Royaume Uni.

CERAAS

Les personnes de contact au CERAAS sont le directeur du centre, le Dr Roy-Macaulay, et le coordinateur du programme scientifique, le Dr Sergé Bracconnier, en détachement du CIRAD. Le CERAAS est un centre de base (ou un centre spécialiste) du CORAF/WECARD qui agit à la fois comme un centre national (qui est un institut de l’ISRA) et un centre régional (sous les auspices du CORAF/WECARD). L’Union Européenne soutient le travail régional alors que l’ISRA finance sa recherche nationale. Le CERAAS a déménagé de Bamby à la station actuelle, à Thies près du collège agricole de l’UCAD, en 1997. L’Union Européenne est le principal donneur pour le CERAAS dont les plantes obligatoires sont le dolique, l’arachide, le pennisetum et le sorgho mais il réalise quelques fois
des recherches sur les autres plantes cultivées comme le sésame, l’élæis et le maïs en
fonction des demandes des partenaires nationaux au Sénégal et dans la sous-région.
Le CERAAS fournit une formation pour les techniciens (court-terme) et les
scientifiques pour les essais (long-terme). Pour le long terme, la durée est de 1-2 ans
bien que des durées de 2-3 ans soient préférables. Le CERAAS fait de la publicité
pour les étudiants et donne des allocations. Il fait aussi le lien avec l’UCAD pour les
formations de troisième cycle en maîtrise de sciences ou en doctorat.

Actuellement, il n’y a pas de biologiste moléculaire au CERAAS mais le
directeur, qui n’a pas de formation dans de domaine, comble ses lacunes. Un
généticien moléculaire du CIRAD doit joindre le CERAAS plus tard, cette année.
Un membre de l’équipe de l’ISRA fait actuellement un doctorat en biologie
moléculaire en France. Le centre a besoin de deux biologistes moléculaires à plein-
temps. Deux domaines cibles en moléculaire au CERAAS sont la génomique
fonctionnelle des systèmes enzymatiques pour l’intégrité des tissus pendant la
sécheresse et la structure génomique pour la caractérisation des marqueurs qui
aideront l’amélioration pour la tolérance à la sécheresse. Le travail est réalisé en
collaboration avec la faculté des sciences, l’UCAD, et est financé par le
gouvernement du Sénégal. Le CERAAS a une infrastructure adéquate pour le travail
régional en biotechnologie. De tels équipements sont actuellement sous-utilisés à la
station. Actuellement, il y a des problèmes de logement pour les scientifiques invités
mais ceci sera résolu d’ici à la fin de l’année avec un peu de chance. Un nouveau
centre de formation avec des logements pour 6 à 8 personnes sera bâti avec le
soutien de l’Union Européenne. Les étudiants en stage et les scientifiques en visite
sont actuellement logés à l’École Nationale Supérieure d’Agriculture (ENSA),
l’école d’agriculture du pays. Tout le travail en champ est fait à la station de
Bambey alors que le travail de laboratoire est fait à la station deThies. Il n’y a pas de
lien direct avec les fermiers mais ceci changera quand un agronome sera secondé
par l’ISRA. Le personnel sénégalais du CERAAS est payé par l’ISRA avec un
complément du CERAAS mais à un niveau plus bas que le personnel international.
Actuellement huit scientifiques y compris un biométricien travaillent au CERAAS
mais le but est d’avoir 15 professionnels avec un doctorat. Des liens avec la
recherche pour le développement de l’UCAD, des laboratoires de recherche de
pointe, l’ITA et les universités de l’Union Européenne existent. Des contraintes
importantes sont le risque que l’Union Européenne devienne la seule source
importante de financement, un budget de base inadéquat, des problèmes de
personnel et des difficultés pour se procurer les réactifs de laboratoire parce que les
sources d’approvisionnement ne sont pas fiables.

Faculté des Sciences, UCAD

Le doyen de la faculté des Sciences et des Techniques de l’UCAD est le Prof. A.
Sall alors que le chef de l’unité de biotechnologie est le Dr Yeye Kane, un biologiste
moléculaire. Le laboratoire de biotechnologie, qui est dans le Département de
biologique, travaille à la fois sur la culture de tissus et la biologie moléculaire mais
la culture de tissus est l’activité dominante. Les activités de culture de tissus en cours sont la culture de méristème, l’embryogenèse somatique, l’haploïdisation menant à la culture d’anthères, la tolérance au sel chez les céréales et la propagation de masse des arbres forestiers (Acacia). Il est prévu de commencer rapidement le travail sur le karité. Le travail en cours comprend aussi la culture de tissus de l’éleïs (pour obtenir des cultivars qui mûrissent avant ou après les pluies), le cassava, le Balanites et le jicama (Pachyrirrizus erosus) (dont les feuilles et les graines ont des propriétés acaricides). Le laboratoire de l’UCAD est actuellement le principal laboratoire de culture de tissus au Sénégal avec la fermeture de celui de l’ISRA. Une fois que les fermiers auront été informés, ils demanderont du matériel issu de culture de tissus. Pour le moment, grâce à l’information faite par une ONG au Sénégal, l’ENDA, les fermiers demandent des plantules issues de culture de tissu de pomme de terre, d’igname et de patate douce. Il y a aussi une demande pour les plantules de manioc provenant de culture de tissus. Tant les tubercules que les feuilles de manioc sont utilisés dans le régime alimentaire. Sur demande, des plantules de certaines variétés d’igname sont produites par culture de tissus. Une recherche en biologie moléculaire visant à caractériser la diversité génétique du dolique est en cours. Les marqueurs moléculaires pour une forte fixation en azote chez le dolique sont recherchés. Le laboratoire a identifié des variétés de dolique avec beaucoup ou peu d’azote et retrouvé les marqueurs dans les lignées. Le travail de caractérisation moléculaire chez le dolique se fait en collaboration avec le CERAAS. Le financement de la recherche sur le dolique est assuré par l’IAEA. La faculté des Sciences à l’UCAD gère des cours de troisième cycle en biotechnologie au niveau de la maîtrise et du doctorat. La faculté prévoit de commencer un nouveau cours international en biotechnologie de troisième cycle d’une année destiné aux entrepreneurs. Des spécialistes du Sénégal ou d’autres pays seront mobilisés. L’enseignement sera à la fois en français et en anglais. Le cours offrira trois domaines de spécialisation, soit la culture de tissus, la fermentation et la production de produits sanitaires pour les animaux comme les vaccins et les kits de diagnostic. L’UCAD aura besoin d’une aide extérieure pour commencer le cours.

ITA

Les personnes de contact à l’institut de technologie des aliments (ITA) sont le directeur de l’Institut, le Dr Ababacar Ndiaye, et le microbiologiste industriel, le Dr L.S. Tounkara, qui est le scientifique responsable des activités de l’unité de biotechnologie. L’unité de biotechnologie de l’ITA a commencé en 1992. A cette époque, 70 % du financement nécessaire était assuré par une coopération entre le Sénégal et la Belgique. Le laboratoire est le mieux équipé des laboratoires de fermentation industrielle de la sous-région. Il possède des fermentateurs ou bioréacteurs de deux litres pour le travail à l’échelle du laboratoire et des fermentateurs ou bioréacteurs de 100 litres pour un travail pilote. L’unité de biotechnologie fabrique aussi l’équipement pour faciliter le transfert de technologie aux entrepreneurs qui pourrait manquer de l’équipement nécessaire. Cela comprend
aussi l’équipement pour le traitement des aliments y compris les pasteurisateurs. Les domaines de recherche incluent le travail sur la production de lait traditionnel (balik) et de lait fermenté. La caractérisation en cours des micro-organismes a pour but de sélectionner les bactéries appropriées pour commencer la production de culture de départ, qui assurerait la fermentation contrôlée. Il y a aussi des recherches sur le soumbala (dawadawa) ou la fermentation de la caroube écossée (Parkia). Les bactéries responsables de la fermentation ont été isolées et la production de la culture de départ a commencé.

La technologie est en cours de transfert à une compagnie alimentaire privée pour commencer la production commerciale de soumbala, un condiment populaire en Afrique de l’Ouest. L’ITA a isolé beaucoup de souches de bactéries qui ont des caractéristiques aromatiques différentes. Le soja et le dolique ont aussi été utilisés avec succès pour produire le produit. Les japonais produisent un produit similaire nommé “natto”. Un marché d’exportation peut être développé pour ce produit. Le laboratoire collabore avec l’Institut d’affaires de l’art du brassage (CBBI) (Belgique) pour le soumbala et d’autres travaux de fermentation. Une culture de bactéries isolées à partir de jus de mangue est utilisée pour produire un vinaigre amélioré. Le vinaigre a été produit avec succès à partir de l’excédent de fruits de mangue qui, autrement, aurait dû être jeté. Cette technologie est au stade du transfert. Les autres produits sont le mycélium de champignon (prêt à démarrer) pour la distribution aux fermiers et la production de gomme de xanthane isolée à partir de Xanthomonas campestris. La gomme quand elle est ajoutée à de la farine de céréales locales comme le millet et le sorgho qui n’ont pas de glutéine, permet à la pâte de lever pendant la fermentation sans qu’il soit nécessaire d’ajouter de la farine de blé dans la farine de synthèse pour le pain. L’ECA et le gouvernement du Japon financent ce projet.

Perspectives

L’infrastructure de laboratoire (table 2) et la main d’œuvre pour la biotechnologie agricole (table 3) sont parmi les meilleures dans la sous-région. La qualité du travail en biotechnologie est relativement plus élevée dans beaucoup de pays de la sous-région (tables 15 et 16). Il y a une bonne répartition de l’utilisation des outils biotechnologique.
Tableau 15. Projets de recherche en biotechnologie végétale au Sénégal.

<table>
<thead>
<tr>
<th>Domaine de recherche</th>
<th>Matériel étudié</th>
<th>Outils de biotechnologie</th>
<th>Laboratoire responsable</th>
<th>Produit souhaité</th>
<th>Stade de développement</th>
<th>Commanditaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro-propagation</td>
<td>Pomme de terre, patate douce, manioc, igname, Pachyrus erosus, plantes médicinales, arbres de reforestation de la Savane</td>
<td>Culture de tissus</td>
<td>UCAD – Faculté des Sciences</td>
<td>Plantules</td>
<td>Terminé ou en cours pour les nouvelles introductions</td>
<td>ENDA</td>
</tr>
<tr>
<td>Embryogenèse somatique</td>
<td>Bambusa ssp., Hibiscus sabdarifa, Phoenix dactylis</td>
<td>Culture de tissus</td>
<td>UCAD – Faculté des Sciences</td>
<td>Plantules</td>
<td>En cours</td>
<td>Gouvernement</td>
</tr>
<tr>
<td>Tolérance à la sécheresse</td>
<td>Dolique</td>
<td>Marqueurs moléculaires et analyses QTL</td>
<td>CERAAS avec le CNRA/ISRA, UCAD, Fourah Bay College, Université de Sierra Léone, Laboratoire de biochimie de l’adaptation végétale (LBPAV) de l’Université de Paris, CIRAD et bientôt l’IITA</td>
<td>Marqueurs moléculaires pour identifier les QTL pour la tolérance à la sécheresse chez le dolique</td>
<td>En cours</td>
<td>FNRAA EU-EDF</td>
</tr>
</tbody>
</table>

../ Continué
Table 15. (Cont.)

<table>
<thead>
<tr>
<th>Domaine de recherche</th>
<th>Matériel étudié</th>
<th>Outils de biotechnologie</th>
<th>Laboratoire responsable</th>
<th>Produit souhaité</th>
<th>Stade de développement</th>
<th>Commanditaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixation biologique d’azote</td>
<td>Rhizobium</td>
<td>Fermentation</td>
<td>ISRA en collaboration avec l’IRD et l’UCAD</td>
<td>Inoculum de rhizobium</td>
<td>Transfert de technologie</td>
<td>UNESCO</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Marqueurs moléculaires</td>
<td></td>
<td></td>
<td></td>
<td>IAEA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>FAO</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNEP</td>
</tr>
<tr>
<td>Caractérisation de micro-organismes entiers dans la zone des racines</td>
<td>Ecologie des micro-organismes des sols</td>
<td>Caractérisation moléculaire microscopique</td>
<td>ISRA avec l’IRD et l’UCAD</td>
<td>Inoculums variés y compris les rhizobiums et mycorhizes</td>
<td>En cours</td>
<td></td>
</tr>
<tr>
<td>Isolement et production de cultures de départ pour la fermentation des aliments</td>
<td>Aliments fermentés : soumbala (dawadawa), yaourt, jus de mangue, vinaigre et vin à partir de jus de fruit</td>
<td>Fermentation</td>
<td>ITA</td>
<td>Cultures de départ</td>
<td>Terminé et technologie transférée</td>
<td>DGIC (Belgique)</td>
</tr>
<tr>
<td>Production de métabolites de micro-organismes</td>
<td>Acides aminés, enzymes, vitamines, arômes, antibiotiques, polymères biologiques (gomme de Xanthane)</td>
<td>Fermentation</td>
<td>ITA</td>
<td>Protocoles définis pour enlever la gomme de xanthane de la pâte de céréales locales pour la cuisson au four</td>
<td>En cours mais la production de gomme de xanthane est terminée</td>
<td>JICA</td>
</tr>
</tbody>
</table>
Table 16. Projets de recherche en biotechnologie animale au Sénégal.

<table>
<thead>
<tr>
<th>Domaine de recherche</th>
<th>Matériel étudié</th>
<th>Outils de biotechnologie</th>
<th>Laboratoire responsable</th>
<th>Produit souhaité</th>
<th>Stade de développement</th>
<th>Commanditaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procédures de diagnostic rapide</td>
<td>Kit ELISA pour la peste bovine, surveillance de la peste porcine africaine</td>
<td>Marqueurs moléculaires</td>
<td>ISRA-LNERV en collaboration avec PACE et l’université de Californie à Davis</td>
<td>Kits de diagnostic</td>
<td>Validation</td>
<td>IAEA</td>
</tr>
<tr>
<td>Contrôles de diverses maladies épizootiques</td>
<td>Vaccins pour la maladie de Newcastle et la fièvre de la vallée du Rift</td>
<td>Marqueurs moléculaires</td>
<td>ISRA</td>
<td>Vaccin bivalent</td>
<td>Développement des protocoles</td>
<td>FAO</td>
</tr>
</tbody>
</table>
Grands enjeux généraux de la biologie en Afrique de l’Ouest et du centre

Propriété intellectuelle et compétences pour l’évaluation d’impact au NARS

La plupart des NARS contactés indique de très faibles compétences pour la gestion de la propriété intellectuelle (23 %) et pour l’évaluation de l’impact (50 %) (Table 17). Etant donné l’importance croissante de la propriété intellectuelle (IP) pour accéder à la technologie spéciale des biotechnologies et partager les bénéfices des ressources génétiques des plantes, une meilleure connaissance des questions de l’IP au sein du NARS est impérative. Ceci peut être atteint par des arrangements sur la formation. Il apparaît que les cours de formation sur l’évaluation de l’impact ont plus été suivis par les NARS que ceux sur la propriété intellectuelle. Par le passé, l’Institut du Sahel (INSAH, Bamako) ainsi que le CSIR (Ghana) ont organisé des cours d’évaluation des impacts de courte durée avec l’aide de l’Université de Purdue. De tels programmes doivent être revus.

Table 17. Compétences en propriété intellectuelle et évaluation des impacts des NARS en Afrique de l’Ouest et du centre.

<table>
<thead>
<tr>
<th>Critères</th>
<th>Répondant positivement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propriété intellectuelle</td>
<td>23</td>
</tr>
<tr>
<td>Evaluation des impacts</td>
<td>50</td>
</tr>
</tbody>
</table>

Contraintes auxquelles la recherche en biotechnologie est exposée dans les NARS de la sous-région

Etant donné les contraintes répertoriées dans chacun des NARS, la production actuelle de biotechnologie apparaît louable. Les NARS qui sont les mieux dotés en infrastructure sont généralement les plus actifs. La plupart d’entre eux reçoivent un soutien financier extérieur. Un résumé des contraintes rencontrées par les NARS, selon leur point de vue, est donné ici pour les différents pays. Il est impératif que tous les efforts s’employant à résoudre les lacunes en biotechnologies dans la sous-région prennent en compte ces contraintes.

Une contrainte clé pour laquelle il existe des demandes récurrentes dans les NARS est la formation tant au niveau du chercheur que du technicien pour la biotechnologie et la bio-sécurité. Chaque pays visité met cela en avant. Après viennent, dans l’ordre, l’infrastructure du laboratoire, suivi par le financement et l’information du public. La disponibilité en pièces de rechanges pour le laboratoire ainsi que de techniciens qualifiés pour les réparations sont les principales
préoccupations de la plupart des NARS. Le manque d’information du public vient au même rang (table 18). De manière surprenante, le faible lien avec le secteur privé, qui est évident dans tous les pays visités, est mentionné seulement par la Côte d’Ivoire. Peut-être que si le niveau de sensibilisation du public est amélioré et que les principales contraintes des produits de la recherche sont examinées, les NARS pourraient avec confiance s’engager dans un dialogue constructif avec le secteur privé. Cependant, à en juger par l’exemple de l’ENDA (une ONG du Sénégal), la création d’une sensibilisation suivie par un lien prospectif avec le secteur privé peut mener à une contribution du secteur privé au développement des infrastructures. Des accords peuvent être faits pour produire des matières premières pour le secteur privé. Les paiements pour couvrir les coûts des investissements privés peuvent se faire via l’infrastructure. Un arrangement similaire est en cours au Mali entre le laboratoire de culture de tissus à Katibougou et une compagnie privée pour la production de plantules de pomme de terre. Les problèmes d’approvisionnement en électricité sont communs dans la plupart des pays visités mais ils sont plus aigus au Nigeria, le seul pays qui les mentionne comme une contrainte de premier ordre.

Le niveau de l’intérêt politique pour le développement des biotechnologies parmi les pays de la sous-région est variable. Récemment, le gouvernement du Nigeria a augmenté l’allocation budgétaire du Ministère des Sciences et des Technologies pour le développement des biotechnologies.

Un seul pays, le Burkina Faso, a indiqué que l’acquisition de journaux récents était une contrainte. Il n’est pas exagéré de dire que c’est un problème dans tous les pays. Les journaux sont publiés en Europe et en Amérique du Nord et pour les obtenir, les scientifiques doivent payer en monnaie forte.

Information des NARS en Afrique de l’Ouest et du centre concernant les activités du CORAF/WECARD

La question de l’information des activités du CORAF/WECARD par les NARS de la sous-région est devenue une préoccupation au moment où un programme pour un cadre régional pour les biotechnologies a du être recherché avec l’organisation sous-régionale jouant un rôle principal de coordination et d’aide. Ceci amène la question de la compétence de l’organisation sous-régionale à atteindre ses partenaires clés de recherche. A cet égard, tant les NARS, partenaires traditionnels du CORAF/WECARD, que les universités ont été examinées pour différents critères d’information. Les universités ne sont pas des partenaires traditionnels du CORAF/WECARD mais elles ont les capacités pour la biotechnologie et collaborent activement avec les NARS membres du CORAF/WECARD. En tout, 25 NARS et sept universités actives en biotechnologie agricole ont été étudiés dans la région. Ce sont les mêmes institutions qui ont été examinées dans l’étude détaillée actuelle de biotechnologie. Le niveau d’information des différentes activités clés du CORAF/WECARD étaient faibles dans les NARS et les universités (Table 19). Les sept universités des pays francophones et anglophones donnent une côte nulle pour toutes les activités mentionnées du CORAF/WECARD.
Table 18. Contraintes de développement des biotechnologies que rencontre l’Afrique de l’Ouest et du centre selon le point de vue du NARS

<table>
<thead>
<tr>
<th>Contraintes clés</th>
<th>Burkina Faso</th>
<th>Cameroun</th>
<th>Côte d’Ivoire</th>
<th>Ghana</th>
<th>Mali</th>
<th>Nigeria</th>
<th>Sénégal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure de laboratoire</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Financement</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Formation/main d’œuvre</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Information du public</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Législation pour la bio-sécurité</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Accès à l’information et technologie</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produits chimiques pour le laboratoire</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Faibles liens avec le secteur privé</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricité</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Pièces de rechange et techniciens pour les réparations</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faible intérêt politique</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Manque de journaux actuels</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 19. Information sous-régionale au sujet des activités du CORAF/WECARD par les NARS de l’Afrique de l’Ouest et du centre

<table>
<thead>
<tr>
<th>Activités du CORAF/WECARD</th>
<th>Répondant de manière positive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Présence à des réunions</td>
<td>31.2</td>
</tr>
<tr>
<td>Participation dans des réseaux de recherche</td>
<td>21.9</td>
</tr>
<tr>
<td>Réception régulière d’information</td>
<td>31.2</td>
</tr>
<tr>
<td>Réception occasionnelle d’information</td>
<td>31.8</td>
</tr>
</tbody>
</table>

Sur les 32 NARS étudiées, sept sont des départements d’universités.

Il apparaîtrait que le CORAF/WECARD devra réformer sa machinerie afin d’être capable d’atteindre tous ses mandants dans la sous-région et assurer une participation effective dans toutes les activités sous-régionales. Un effort doit être fait pour établir une communication avec les départements universitaires en général. La recherche en agriculture et en biotechnologie doit obtenir le concours de la recherche en biotechnologie agricole et en agronomie de ces institutions.

Politique pour la biologie et implication nationale pour la biotechnologie et la bio-sécurité.

En général, il y a plus d’information au niveau gouvernemental sur les questions de la biotechnologie et de la bio-sécurité actuellement dans la zone d’Afrique de l’Ouest et du centre qu’en 2000. Cependant, pour la plus grande part, l’augmentation de l’information concerne le thème de la bio-sécurité plutôt que sur celui de l’utilisation des outils de la biotechnologie dans la production de produits utiles (Table 20). Le Nigeria qui a élaboré une politique sur les biotechnologies avec des plans d’action sur l’implémentation de la politique (FMST 2001) est une exception. La création d’une agence nationale de développement des biotechnologies (NABDA - National Biotechnology Development Agency) pour coordonner et promouvoir la recherche en biotechnologie et le développement, la formation, le développement de l’esprit d’entreprise et la création d’information découle du document nigérien de politique. Le laboratoire de pointe de biotechnologie mentionné plus tôt est le résultat des efforts renouvelés pour la biotechnologie. Le programme nigérien est conduit par un chef d’état intéressé, qui voit dans le potentiel des biotechnologies un outil pour la promotion socio-économique de la nation. La Côte d’Ivoire et le Sénégal ont aussi montré un intérêt à des degrés variés mais dans le cas du dernier, ceci a été poussé par des initiatives de donateurs et éclairé par le soutien des ONG à l’équipement des universités pour la biotechnologie. La Côte d’Ivoire a établi un comité pour développer la politique de la nation concernant les biotechnologies alors
qu’un atelier de travail national pour délibérer sur l’avenir des biotechnologies s’est récemment déroulé au Mali (juin 2002). Le Ghana – grâce à un prêt de la Banque Mondiale dans le cadre du programme d’investissement dans le sous-secteur agricole (AgSSIP - Agricultural Sub-Sector Investment Program) a investi environ 165'000 $ US pour agrandir et moderniser le laboratoire de biologie moléculaire du département de la science des plantes cultivées de l’université du Ghana. Une partie du prêt AgSSIP servira à faire face aux coûts croissants du laboratoire de biologie moléculaire de l’Institut de recherche sur l’éïaeis dans le cadre du projet de développement de la noix de coco. Il est prévu que ces développements de l’infrastructure commencent cette année. Le Cameroun, comme cela est dit dans le rapport sur l’étude détaillée des biotechnologies en 2000 (Alhassan 2001), a obtenu un prêt de la Banque Africaine de développement pour réaménager ses infrastructures de recherches agronomiques y compris l’équipement de culture de tissus à Ekona. Cependant, cela va juste commencer au laboratoire d’Ekona.

- Capacité d’emprunter à la Banque Mondiale ou de recevoir les subventions d’assistance technique de l’UNDP ;
- Signataire ou intention de ratifier le protocole de Carthagène sur la bio-sécurité pas plus tard que la date d’achèvement des activités de leur projet UNEP/GEF ;
- Le pays n’a pas reçu auparavant l’assistance du projet pilote de l’UNEP/GEF sur la bio-sécurité ;
- Le coordinateur national du GEF exprime formellement l’intérêt du pays à participer au Projet.

nouvelles preuves scientifiques pour accorder une requête précédemment rejetée (la Loi Modèle Africaine n’offre que la possibilité de retirer un permis accordé précédemment), l’utilisation du centre d’échange pour la biotechnologie (Biosafety Clearing House) pour accélérer les décisions d’importation en urgence et il y a des besoins d’étiquetage extrêmes. Il est nécessaire que les décisions prises dans la loi nationale soit consistantes avec celles du Protocole. Etant donné les différences dans la lettre et l’esprit des deux documents, l’harmonisation des lois dans la sous-région pourrait devenir compliquée.
Table 20. Niveau d’implication du gouvernement dans le domaine de la biotechnologie en Afrique de l’Ouest et du centre

<table>
<thead>
<tr>
<th>Pays</th>
<th>Ministères clés</th>
<th>Intérêt</th>
<th>Nature de l’intérêt</th>
<th>Document de politique nationale au sujet des biotechnologies disponible</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burkina Faso</td>
<td>Ministère de l’Education Supérieure et de la Recherche Scientifique, Ministère de l’Environnement</td>
<td>Intéressé</td>
<td>Esquisse de comité de bio-sécurité établie</td>
<td>Non</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Ministère de l’Education Supérieure et de la Recherche Scientifique, Ministère de l’Environnement et de la Forêt</td>
<td>Intéressé</td>
<td>Loi de bio-sécurité prête pour la législation</td>
<td>Non</td>
</tr>
</tbody>
</table>
| Côte d’Ivoire| Ministère de l’Education Supérieure, Ministère de l’Environnement | Très intéressé | Loi de bio-sécurité prête pour la législation
Encouragement pour l’établissement d’un laboratoire central de biotechnologie moderne | Non |
| Ghana | Ministère des Sciences de l’Environnement et de la Technologie | Intéressé | Premier jet pour un cadre de bio-sécurité publié pour la législation en attente | Non |
| Mali | Ministère de l’Education Supérieure et de la Recherche Scientifique, Ministère de l’Environnement | Intéressé | Définition de la politique | Non |
| Nigeria | Ministère Fédéral des Sciences et des Technologies | Très intéressé | Politique des biotechnologies adoptée
Loi de bio-sécurité prête pour la législation.
Agence nationale de développement des biotechnologies établie. Laboratoire de pointe de biotechnologie (en construction) dans un village des sciences crée | Oui |
| Sénégal | Ministère de l’Education Supérieure et de la Recherche Scientifique, Ministère de l’Environnement | Intéressé | Processus de développement d’un cadre national pour les biotechnologies qui commence juste avec des séminaires d’information | Non |
Information du public sur les biotechnologies et les questions de bio-sécurité

Pour évaluer l’étendue de l’information du public sur les questions de la biotechnologie et de la bio-sécurité, des questionnaires ont été distribués aux ONG et aux maisons des médias. Des discussions de suivi ont été organisées avec certaines d’entre elles. Ces groupes ont été choisis parce que leurs équivalents qui se font entendre en Europe et ailleurs dans le monde influencent négativement le cours du développement des biotechnologies et le marché des produits génétiquement modifiés (GM). Ils peuvent, selon leur niveau d’information, influencer le cours du développement des biotechnologies dans la sous-région. La presse, en particulier, influence le cours de la pensée du public par les informations qu’elle dissémine. Une corrélation a été établie entre l’augmentation de la couverture des médias consacrée à une question et l’augmentation de la sensibilisation du public (Marks et al. 2002). Onze ONG et 18 maisons des médias ont été étudiés en détail à travers la sous-région. Dans beaucoup de cas, les discussions avec les groupes étaient opportunistes dépendant de leur disponibilité.

Certaines ONG seulement étaient intéressées par les questions environnementales alors que quelques-unes unes avaient des mandats tant pour l’environnement que pour les fermiers. Les caractéristiques des maisons des médias étudiées en détail sont détaillées dans la table 22. Pour la presse écrite, il y a six journaux publics et huit privés. Les trois radios et la seule télévision (Ghana Télévision) sont publiques. Il apparaît que le communautaire des ONG est mieux informé sur les questions de la biotechnologie que la presse : 54,5 % des ONG et seulement 25 % de la presse indique une certaine compréhension de la biotechnologie (tables 23 et 24). Une ONG internationale au Sénégal (Action de développement de l’environnement – ENDA - Environment Development Action) qui à la fois un mandat de transfert de technologie vers les fermiers et un mandat environnemental, sensibilise les fermiers au matériel issu de culture de tissus et suscite une demande de leur part (fermiers commerciaux) pour des plantules qu’ils ont forci pour les fermiers. L’ENDA a aussi réaménagé le laboratoire de culture de tissus à l’université Cheik Anta Diop pour être capable de produire des plantules issues de culture de tissus pour ses fermiers. L’Université obtient des plantules par culture de tissus chez le palmier dattier, les arbres forestiers et les bananiers qui sont ensuite distribuées. Quelques plantes médicinales sont aussi produites. L’Association des Producteurs de Coton au Mali n’a pas entendu parler du coton Bt mais connaît le coton biologique connu sous le nom de « cotton Biologie » introduit par une ONG. Le « cotton Biologie » est encore au stade de démonstration.

45,5 % ont un peu de compréhension pour la bio-sécurité (table 23). Moins de la moitié des ONG ont une attitude positive pour les produits agricoles basé sur la biotechnologie y compris les OGM. Bien qu’aucune maison de la presse ait une attitude négative vis-à-vis des biotechnologies et de ses produits, une majorité écrasante était neutre, c’est-à-dire, n’avait pas de position déterminée. Les journalistes donnent plus d’information sur les questions scientifiques que sur les questions agricoles (table 25). Les contraintes répertoriées par les journalistes et
rendant compte du faible nombre de reportages sur les questions de la science et de la biotechnologie en particulier sont :

- difficultés pour obtenir de sources locales des informations sur la science et la biotechnologie en vue de publication. La plupart des journalistes obtiennent leurs informations par Internet ou d’autres sources étrangères secondaires.
- difficultés de recruter du personnel scientifique pour former les journalistes
- manque de formation pour mettre à jour les connaissances sur la biotechnologie et la bio-sécurité
- infrastructure limitée pour les reportages scientifiques télévisés. Les équipements disponibles (par ex. caméra ou véhicule) sont destinés principalement aux événements sociaux, spécialement les événements politiques. Les reportages scientifiques ont une faible priorité.

Les recommandations des journalistes pour répondre aux problèmes sont :

- Ateliers et séminaires pour augmenter l’information sur les biotechnologies et la bio-sécurité.
- Encourager les inscriptions d’étudiants en sciences dans les écoles de journalisme.
- Introduire un cycle d’étude scientifique dans les écoles de journalisme (l’Institut de Journalisme du Ghana a réintroduit les cours de journalisme agricole qui avaient été mis en place quelques années plus tôt avec l’aide de l’USAID et a entrepris de former un instructeur local dans le domaine du journalisme agricole)
- Les maisons des médias devraient être encouragées à introduire des bureaux des sciences
- Les scientifiques africains devraient être encouragés à s’ouvrir aux journalistes

Il est globalement recommandé d’augmenter l’information dans les médias, parmi les ONG et le public en général par des séminaires fréquents, des ateliers de travail et un soutien financier de programmes concernant la biotechnologie, la bio-sécurité et la biodiversité dans les médias écrits et électroniques. Les organisations de recherche dans la sous-région doivent être encouragées à disséminer l’information aux médias et au public en général mais le NRAS pourrait être habilité à générer de l’information à la première place.
Table 21. Etat de la loi sur la bio-sécurité dans certains pays de l’Afrique de l’Ouest et du centre

<table>
<thead>
<tr>
<th>Pays</th>
<th>Esquisse de cadre</th>
<th>Loi adoptée</th>
<th>Loi mise en application</th>
<th>Coordinateur</th>
<th>Action sur le protocole de Carthagène</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burkina Faso</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
<td>Ministère de l’Environnement</td>
<td>Pas ratifié</td>
</tr>
<tr>
<td>Cameroun</td>
<td>Oui</td>
<td>Non (presque prêt)</td>
<td>Non</td>
<td>Ministère de l’Environnement</td>
<td>Ratifié</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>Oui</td>
<td>Non (presque prêt)</td>
<td>Non</td>
<td>Ministère de l’Environnement</td>
<td>Pas ratifié</td>
</tr>
<tr>
<td>Ghana</td>
<td>Oui</td>
<td>Non</td>
<td>Non</td>
<td>Ministère des Sciences de l’Environnement et de la Technologie</td>
<td>Pas ratifié (en attente au Cabinet)</td>
</tr>
<tr>
<td>Mali</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
<td>Ministère de l’Environnement, du Territoire et de l’aménagement urbain</td>
<td>Pas ratifié (autorisation du Cabinet)</td>
</tr>
<tr>
<td>Nigeria</td>
<td>Oui</td>
<td>Non</td>
<td>Non</td>
<td>Ministère Fédéral de l’Environnement</td>
<td>Pas ratifié</td>
</tr>
<tr>
<td>Sénégal</td>
<td>Non</td>
<td>Non</td>
<td>Non</td>
<td>Ministère de l’Environnement</td>
<td>Pas ratifié</td>
</tr>
</tbody>
</table>
Table 22. Caractéristiques des maisons des médias étudiées en détail en Afrique de l’Ouest et du centre.

<table>
<thead>
<tr>
<th>Pays</th>
<th>Ecrite publique</th>
<th>Privé</th>
<th>Radio</th>
<th>TV</th>
<th>Zone de circulation</th>
<th>Position sur les biotechnologies (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burkina Faso</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Dans tout le pays</td>
<td>100 - -</td>
</tr>
<tr>
<td>Cameroun</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>Dans tout le pays</td>
<td>- - 100</td>
</tr>
<tr>
<td>Côte d’Ivoire</td>
<td>-</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>Inconnu</td>
<td>25 0 75</td>
</tr>
<tr>
<td>Ghana</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>Dans tout le pays</td>
<td>20 0 80</td>
</tr>
<tr>
<td>Mali</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Dans tout le pays</td>
<td>- - 100</td>
</tr>
<tr>
<td>Nigeria</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>Dans tout le pays</td>
<td>25 0 75</td>
</tr>
<tr>
<td>Sénégal</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Dans tout le pays</td>
<td>100 - -</td>
</tr>
</tbody>
</table>

Toutes les radios et les télévisions étudiées en détail étaient publiques.

Table 23. Réactions des ONG aux problèmes de la biotechnologie et de la bio-sécurité en Afrique de l’Ouest et du centre

<table>
<thead>
<tr>
<th>Critère</th>
<th>Réponse (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un peu de compréhension en biotechnologie</td>
<td>54,5</td>
</tr>
<tr>
<td>Attitude positive pour les produits d’agriculture biotech y compris les OGM</td>
<td>45,5</td>
</tr>
<tr>
<td>Un peu de compréhension en bio-sécurité</td>
<td>45,5</td>
</tr>
<tr>
<td>Propension à former en bio-sécurité</td>
<td>81,8</td>
</tr>
<tr>
<td>Propension à recruter du personnel pour la bio-sécurité</td>
<td>72,7</td>
</tr>
</tbody>
</table>

Nombre des ONG étudiées = 11
Table 24. intérêt des médias au sujet de la biotechnologie et les disciplines proches en Afrique de l’Ouest et du centre

<table>
<thead>
<tr>
<th>Critère</th>
<th>Réponse positive (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disponibilité d’un bureau des sciences</td>
<td>50,0</td>
</tr>
<tr>
<td>Propension à recruter un correspondant pour la science</td>
<td>75,0</td>
</tr>
<tr>
<td>Reportage sur l’agriculture</td>
<td>68,8</td>
</tr>
<tr>
<td>Reportage sur la santé et l'environnement</td>
<td>62,5</td>
</tr>
<tr>
<td>Compréhension de la biotechnologie</td>
<td>25,0</td>
</tr>
</tbody>
</table>

Nombre de maison des médias étudiées = 16

Table 25. Fréquence des reportages sur la science et l’agriculture en Afrique de l’Ouest et du centre.

<table>
<thead>
<tr>
<th>Domaine de reportage</th>
<th>Journalier</th>
<th>Hebdomadaire</th>
<th>Bimensuel</th>
<th>Occasionnel</th>
<th>Rarement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science</td>
<td>18.8</td>
<td>18.8</td>
<td>6.2</td>
<td>50.0</td>
<td>6.2</td>
</tr>
<tr>
<td>Agriculture</td>
<td>28.6</td>
<td>14.2</td>
<td>0</td>
<td>28.6</td>
<td>28.6</td>
</tr>
</tbody>
</table>

Centres internationaux de recherche agricole et agences de promotion de la science en biotechnologie en Afrique de l’Ouest et du centre

IITA

Culture de tissus

Il existe une banque de gène in vitro pour le manioc, l’igname et le plantain/bananier y compris la cryo-préervation. Il y a une unité de secours d’urgence pour les plantes cultivées multipliées végétativement et la livraison de nouvelles propagules aux systèmes agricoles. Des propagules testées pour les pathogènes sont disponibles pour l’exportation après une indexation et un diagnostic pour les nuisibles.

Transformation génétique

Il y a un protocole de régénération efficace, interne, génotype-dépendant pour les méristèmes apicaux de plantains et de bananiers. Une compétence similaire existe pour la transformation et la régénération du manioc. L’IITA effectue encore des recherches pour la transformation et la régénération de l’igname et du dolique en collaboration avec des laboratoires de pointe de l’Union Européenne et d’Amérique du Nord.

Sélection assistée par marqueurs

Les marqueurs RAPD et AFLP sont utilisés pour déterminer la variation génétique et la phylogénie du gérmplasme de Musa. Les marqueurs AFLP et SSR sont utilisés pour des recherches sur la parthénocarpie des fruits, le nanisme et la dominance.
apicale chez le bananier et le plantain. Ces mêmes marqueurs sont aussi utilisés pour une sélection à la résistance au charançon du bananier.

Pour la cartographie du manioc avec les marqueurs RFLP et SSR pour la maladie de la mosaïque du manioc, une cartographie des gènes dominants a été réalisée en collaboration étroite avec le CIAT en Colombie et avec l’ILTAB aux USA pour le clonage. Pour l’igname, la diversité génétique est en cours d’étude en utilisant les marqueurs AFLP. Les cartes AFLP sont disponibles pour l’igname blanc et l’igname ailée (ou grand igname - (Dioscorea alata L.). Pour le dolique des cartes génétiques ont été réalisées avec les marqueurs RAPD, AFLP et SSR. Ce travail se fait en collaboration avec le John Innes Centre (Norwich, UK), l’université de Saskatchewan, au Canada et des universités américaines. Des marqueurs QTL pour le poids de 100 graines, le virus de la mosaïque du dolique, et les bruches ont été identifiés. Des marqueurs ADN pour la résistance au Striga chez le dolique ont aussi été trouvés.

Chez le maïs, le «fingerprinting» des variétés locales non-classifiées des fermiers et de différentes lignées a été accompli. Bientôt, la génomique nutritionnelle des marqueurs ADN pour l’amélioration de la nutrition (biofortification) commencera.

Table 26. Outils agro-biotechnologiques de l'IITA chez sept plantes cultivées.

<table>
<thead>
<tr>
<th>Plante cultivée</th>
<th>Culture de tissus</th>
<th>Transgénique</th>
<th>Marqueurs ADN</th>
<th>Fingerprinting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manioc</td>
<td>Routine</td>
<td>Interne</td>
<td>Carte / QTL</td>
<td>Nuisibles, Patrimoine héréditaire</td>
</tr>
<tr>
<td>Icigne</td>
<td>Routine</td>
<td>Pas disponible</td>
<td>Carte / QTL</td>
<td>Nuisibles, Patrimoine héréditaire</td>
</tr>
<tr>
<td>Bananier/plantain</td>
<td>Routine</td>
<td>Interne</td>
<td>Carte / QTL</td>
<td>Nuisibles, Patrimoine héréditaire</td>
</tr>
<tr>
<td>Maïs</td>
<td>-</td>
<td>Disponible</td>
<td>Carte / QTL</td>
<td>Patrimoine héréditaire</td>
</tr>
<tr>
<td>Dolique</td>
<td>-</td>
<td>En développement</td>
<td>Carte / QTL</td>
<td>Patrimoine héréditaire</td>
</tr>
<tr>
<td>Soja</td>
<td>-</td>
<td>Disponible</td>
<td>Disponible</td>
<td>-</td>
</tr>
<tr>
<td>Cacao</td>
<td>Début</td>
<td>-</td>
<td>Début</td>
<td>Début</td>
</tr>
</tbody>
</table>

Source: Rodomiro Ortiz (IITA, communication personnelle).
Outils de diagnostic et d’évaluation des risques

En plus de ce qui précède, l’IITA a développé des outils de diagnostic basés sur les outils ELISA et PCR servant à la détection de virus chez les plantes. L’IITA a la compétence d’entreprendre des évaluations des risques environnementaux y compris des plantes génétiquement modifiées comme cela est prouvé par l’analyse de flux de gène réalisée pour le dolique et les plantes sauvages apparentées.

Réseau des plantes cultivées et biotechnologie

L’IITA abrite le réseau maïs WECAMAN (Réseau du maïs d’Afrique de l’Ouest et du centre - West and Central African Maize Network) de la sous-région. Il est actuellement basé au bureau central du WARDA à Bouaké, en Côte d’Ivoire. Le WECAMAN est aussi un des réseaux du CORAF/WECARD. Le coordinateur du réseau est le Dr Baffour Badu-Apraku. Le WECAMAN a soumis une proposition (avril 2002) à l’organisation sous-régionale et a obtenu un avis favorable en août 2002 pour « améliorer des capacités de recherche en biotechnologie des NARS afin de développer des germplasmes de maïs résistants/tolérants au stress en Afrique de l’Ouest et du centre ». La proposition vaut environ 1,5 millions de dollars US.

Construction de compétences

WARDA

L’Association d’Afrique de l’Ouest pour le développement du riz est une association inter-gouvernementale autonome qui comprend 17 pays de la sous-région. Sa mission est de renforcer les capacités sub-sahariennes pour la production de
technologies, le transfert de technologie et l’énonciation d’une politique afin d’augmenter la production durable des systèmes de culture basés sur le riz tout en conservant les ressources naturelles de base et en contribuant à la sécurité alimentaire des pauvres foyers ruraux et urbains.

Recherche
Le WARDA utilise la culture d’anthère secondée par la caractérisation moléculaire des génotypes de riz. Le WARDA ne produit pas, pour l’instant, de plants transgéniques à cause de l’absence de cadre de bio-sécurité en Côte d’Ivoire. Il collabore actuellement avec des laboratoires de pointe dans ce domaine. Pour anticiper un travail imminent de transformation et le passage d’une loi de bio-sécurité en Côte d’Ivoire, le WARDA complète ses équipements de confinement. Une sélection assistée par marqueurs est en cours pour les caractères comme le caractère de mauvaise herbe et la résistance aux maladies. Le WARDA travaille en ce moment sur l’introgression de gènes de résistance au virus de la panachure jaune du riz (RYMV - rice yellow mottle virus) dans de nouveaux cultivars. Les institutions suivantes collaborent avec le WARDA pour la biotechnologie du riz :

- l’université de Cornell l’assiste dans la recherche pour déterminer la diversité mondiale totale de Oryza glaberrima.
- l’IRD (Montpellier) l’aide dans le développement de marqueurs ADN pour une sélection assistée au RYMV.
- l’IRRI participe au développement de marqueurs pour la sélection à la cécidomyie africaine des galles du riz
- le YAAS (Académie Yunnan des sciences agricoles - Yunnan Academy of Agricultural Science, Chine) est impliqué dans l’échange de matériel interspécifique qui restaure la fertilité des lignées mâle stérile cytoplasmique. Ceci est important pour la production de riz hybride parce que cette technologie peut marquer des gènes de stérilité pour surpasser des problèmes de stérilité.
- le CIAT seconde dans l’échange de lignées interspécifiques.

Formation
Le WARDA a un laboratoire modeste pour former en culture d’anthères et en biologie moléculaire. Cette formation est soutenue par l’USAID pour les boursiers extérieurs. Une visite dure 6 semaines. La Fondation Rockefeller participe à la construction de capacités pour les biotechnologies en Afrique de l’Ouest en parrainant les candidats identifiés par le WARDA pour des bourses. Actuellement des formations sont en cours dans les institutions suivantes :

- l’université Cornell organise une formation pour les étudiants de Côte d’Ivoire.
- l’université East Anglia, en association avec le John Innes Center aide deux doctorants, un du Nigeria faisant de l’amélioration moléculaire pour la résistance au RYMV et le second de la République du Bénin qui travaille sur la résistance aux nématodes par le marquage de gènes de résistance
• l’université d’État de Louisiane forme un étudiant nigérien travaillant sur la tolérance du riz aux sols acides mais le travail en champ se fait au WARDA
• l’université Natal instruit un nigérien qui va prochainement entreprendre une recherche en biotechnologie avec un travail en champ au WARDA
• l’Université A & M du Texas forme un étudiant malien qui travaille sur la sélection assistée par marqueurs pour la tolérance à la sécheresse et un autre étudiant de la Côte d’Ivoire travaillant sur la sélection assistée par marqueurs pour la cécidomyie africaine des galles du riz.

Les candidats ci-dessus sont supposés retourner dans leurs programmes nationaux d’obtention de diplômes. Le réseau Ouest et Centre Africain du riz (ROCARIZ), le réseau régional du riz aident les NARS par des formations de courte durée (6 semaines) à la sélection assistée par marqueurs et la culture d’anthère. Le réseau a jusqu’à maintenant formé deux sélectionneurs : un du Togo et un du Burkina Faso. La Fondation Rockefeller aide le WARDA en fournissant les ressources pour coordonner la formation biotech, une initiative de donateur fortement louable qui doit être encouragé. Lorsqu’elle est couplée avec l’amélioration des infrastructures de laboratoire dans le pays du candidat, une fondation solide pour une capacité de recherche dans le pays et une collaboration sous-régionale sont planifiées.

L’Institut international de recherche sur les plantes cultivées pour les tropiques semi-arides (ICRISAT - International Crops Research Institute for the Semi-Arid Tropics) a la mission d’ «accroître les sources de revenus des pauvres par la génétique intégrée et des stratégies de gestion des ressources naturelles». Son bureau principal est à Patancheru (près d’Hyderabad, Andhra Pradesh, Inde), les principales stations pour l’Afrique de l’Ouest et du centre sont à Niamey (Niger). Il est aussi connu à l’ICRISAT comme leur centre régional. Une petite équipe travaille principalement sur le sorgho à Bamako (Mali) et du personnel recruté internationalement (IRS) à Kano (dans la station de l’IITA) au Nigeria. Les plantes cultivées obligatoires de l’ICRISAT sont trois céréales, le sorgho, le pennisetum et l’éleusine et trois légumineuses, le pois chiche, le pois cajan et l’arachide. L’ICRISAT a six thèmes généraux de travail qui sont:
1. Mettre à profit la biotechnologie pour les pauvres;
2. Gérer et utiliser les plantes cultivées pour la sécurité alimentaire et la santé;
3. Gérer l’eau, le sol et l’agro-biodiversité pour la santé de l’écosystème;
4. Systèmes d’approvisionnement en graines durables pour la productivité;
5. Augmenter la productivité des plantes cultivées et du bétail et diversification des systèmes;
6. Avenir des tropiques semi-arides et voies de développement.

Les résultats attendus sous le thème global des biotechnologies sont des systèmes de sélection solides et peu coûteux pour une sélection indirecte en amélioration des plantes et pour la détection de contaminants ; la caractérisation génétique des stocks pour l’amélioration des plantes et la recherche scientifique de base ; et des lignées agronomiques de sélection et d’élite avec des résistances/tolérances au stress et une forte qualité nutritive.
Recherche et personnel

La station ICRISAT du Mali a été visitée en juin 2002. Les personnes de contact sont le Dr E. Weltzien-Rattunde, Dr Fred Rattunde (les deux se partageant un travail de sélection du sorgho), le Dr Bonny Ntare (sélectionneur arachide, mais il est bien possible qu’il change pour Niamey) et le Dr Benoit Clerget (un écophysiologiste du sorgho en détachement du CIRAD). La plante cultivée clés sous mandat est le sorgho. Il n’y a pas de laboratoire de biotechnologie ou d’équipement similaire à la station ICRISAT du Mali. A titre d’exemple, la caractérisation est faite en Inde pour cette station. Les domaines de recherche chez le sorgho qui demandent une caractérisation ou une intervention moléculaire sont la résistance à Striga, la tolérance à la sécheresse, l’amélioration de la qualité de fourrage du sorgho pour le bétail, la bio-fortification avec des micro-nutriments et l’évaluation de la diversité génétique du sorgho. Ce dernier point est nécessaire car la race guinéenne de Sorgho dominante est caractérisée par une grande diversité et une caractérisation plus précise. Pour l’arachide, la sélection assistée par marqueur est nécessaire dans les domaines suivants : tolérance à la sécheresse, résistance des rosettes aux virus et résistance à l’afatoxine. La particularité de la production de graines d’arachide est qu’il y a un fort taux de grenaison (80 kg/ha) et la plante est auto-pollinisée. Les fermiers n’ont pas besoin d’acheter les graines tous les ans parce qu’ils peuvent conserver les graines plusieurs années. En conséquence, peu de compagnies sont intéressées par la production commerciale de graines d’arachide. Cette observation a des implications pour l’industrie des graines d’arachide en Afrique de l’Ouest et du centre. Le CIRAD collabore avec l’ICRISAT pour un travail sur le sorgho au Mali. Le CIRAD aidera dans le travail de caractérisation moléculaire de la biodiversité du sorgho. Un laboratoire local de biologie moléculaire est prévu au Mali mais la construction est en attente, ce qui fait que la caractérisation se fera encore en Inde. Une femme biologiste moléculaire devrait venir du CIRAD pour commencer la caractérisation des races locales de sorgho. Il a été suggéré de créer un lien avec la biologie moléculaire appliquée de l’Université du Mali pour la caractérisation du sorgho.

ILRI

L’Institut International de Recherche sur le Bétail (ILRI - International Livestock Research Institute) a pour mandat d’augmenter la productivité des petits éleveurs de bétail et de mélanger les systèmes plantes cultivées-bétails en protégeant les ressources naturelles qui soutiennent ces systèmes. Le bureau central est à Nairobi (Kenya). L’ILRI entretient une petite équipe en Afrique de l’Ouest et du centre grâce à un bureau de l’IITA à Ibadan, Nigeria. L’ILRI a des infrastructures très étendues pour le travail en biotechnologie à son laboratoire de l’ILRI à Nairobi (Kenya) destiné largement au travail de diagnostic chez le bétail et à la production de vaccin. Il y a très peu de contact avec le travail en biotechnologie avec l’Afrique...
de l’Ouest et du centre. Un petit nombre de pays dans la sous-région ont bénéficié de formations pratiques au laboratoire de biotechnologie de Nairobi et ont aussi participé à la recherche révolutionnaire confirmant l’origine africaine des vaches africaines indigènes améliorées (Hanotte et al. 2002). Les pays participant à cette recherche ont seulement soumis des échantillons de sang et se sont plaints du manque de bénéfices directs sur la construction de capacités associée avec cet exercice.

ARCT

- Coordination de la politique agricole commune (UEMOA);
- Coordination des marchés pour les produits agricoles (ECOWAS);
- Coordination des systèmes d’information par les Ministères de l’Agriculture (CORAF/WECARD);
- Coordination des formations et du développement des ressources humaines (HRD) par le CILSS à Ouagadougou;
- Coordination de l’environnement et de la désertification (ECOWAS).

Le programme ci-dessus soutenu par l’IFAD permet le déroulement de tables rondes sur la biotechnologie en mars 2002 à Dakar pour définir la future direction pour les biotechnologies dans la sous-région. L’idée derrière cette activité, suite au rôle de coordination de l’ARCT, est d’harmoniser les programmes dans la sous-région et d’éviter les doubles coûteux.

UNU/INRA

L’université des Nations-Unies/l’Institut des Ressources Naturelles en Afrique (UNU/INRA – United Nations University/Institute for Natural Resources) a été
étalé en 1986 comme Centre de Formation et de Recherche (RTC - Research and Training Center) de l’université des Nations Unies pour catalyser la formation d’un capital humain en science et en technologie pour la conservation efficace, la gestion et l’utilisation des ressources naturelles africaines. Le bureau central est à Accra (Ghana). L’UNU/INRA ne fonctionne pas comme une université traditionnelle. Il n’a pas d’étudiants réguliers, pas de cours réguliers et ne décerne pas de diplômes universitaires. L’UNU/INRA collabore avec des universités existantes pour renforcer les cours existants et développer de nouveaux cours pour les programmes de formation de courte durée pour les chercheurs et les techniciens impliqués dans la conservation de la fertilité du sol et de la biodiversité. Un objectif fondamental est de «développer les connaissances de pointe / savoir de base pour la conservation des ressources naturelles et la gestion dans deux voies: (1) en défiant les scientifiques africains de faire de la recherche «de base», amenant de ce fait les connaissances de base des fermiers et les habitants des forêts aux laboratoires et aux arènes scientifiques «de pointe» et (2) en se concentrant sur l’éducation et la formation de jeunes scientifiques dans la science de pointe». Eu égard au rôle que la biotechnologie peut jouer dans la sécurité alimentaire de la région, l’UNU/INRA a donné 65 000 $ US pour étendre les infrastructures et équiper de façon modeste l’équipement de culture de tissu du Département de Botanique de l’université du Ghana. Cet équipement réaménagé a depuis 1998 (et sous le parrainage des candidats par l’UNU/INRA) donné des cours internationaux en culture de tissus à de nombreux étudiants et techniciens de la sous-région. Ce cours, populaire comme cela a été attesté au mandataire, est organisé sur une base annuelle sauf en 2001 où aucun cours n’a eu lieu. Des cours similaires en biologie moléculaire et en fermentation pourraient être organisés sur une base régulière dans la sous-région. Le Sénégal prévoit un cours professionnel dans différents domaines des biotechnologies.

Investisseurs du Développement

Les actionnaires du développement et les donateurs actifs dans la sous-région pour l’agro-biotechnologie sont l’USAID, l’IAEA, le DANIDA, l’Union Européenne, la Gatsby Charitable Foundation, la Banque de Développement Africain et la Fondation Rockefeller. L’USAID finance actuellement au moins 18 projets de biotechnologie en Afrique, dont un tiers se trouve en Afrique de l’Ouest. Une minorité d’entre eux sont panafriques alors que la majorité se déroule en Afrique de l’Est et du sud (Table 27). Presque tous les projets de l’USAID en Afrique de l’Ouest sont pris en charge par l’IITA. Ils sont prévus dans un but de construire une capacité pour la recherche et le développement, la bio-sécurité ou la sensibilisation/détermination des priorités (Josette Lewis, communication personnelle). La recherche et le développement de constructions de capacités se concentrent dans les domaines de la sélection assistée par marqueurs, le diagnostic moléculaire ou de la transformation génétique. Le financement actuel de l’USAID en Afrique de l’Ouest couvre les trois grands domaines de recherche et de
construction de capacités de développement, la bio-sécurité et la sensibilisation ou la détermination de priorités (table 27).

Le financement du DANIDA se fait principalement dans le domaine de la fermentation des aliments. L’Union Européenne, l’IAEA, la Gatsby Charitable Foundation et la Fondation Rockefeller sont impliqués dans la construction de capacités pour la recherche et le développement. Les activités de la Gatsby Charitable Foundation et de l’IAEA se portent principalement sur la culture de tissus de bananiers et de plantains ainsi que quelques caractérisations moléculaires dans le cas de la Gatsby Charitable Foundation. La Gatsby Charitable Foundation fourni des fonds pour la caractérisation moléculaire de l’igname ainsi que pour le développement d’une carte de liaison. Elle fournit aussi des fonds pour le développement du travail sur le dolique à l’IITA. Le financement de l’Union Européenne couvre la majorité du travail de construction de capacités institutionnelles en culture de tissus et la caractérisation moléculaire ayant pour but le diagnostic ou l’amélioration comme la caractérisation de la sécheresse chez le dolique au CERAAS au Sénégal. Elle soutient aussi la production de bananiers par culture de tissus via le programme INIBAP de l’IPGRI. La Fondation Rockefeller concentre, en grande partie, son aide dans la construction de capacité en bio-sécurité et dans la formation. L’aide apporté au WARDA pour la formation de troisième cycle en biologie moléculaire est unique parmi les donateurs. Les sources de dons multilatérales pour la biotechnologie sont habituellement des composants de grands crédits financiers aux pays, dont une partie est réservée à la biotechnologie au Ghana et au Cameroun.
Table 27. Activités dans le domaine des biotechnologies de l'USAID en Afrique.

<table>
<thead>
<tr>
<th>Secteur</th>
<th>Institution principale</th>
<th>Sous-région</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D/capacité scientifique</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cacao/arbres cultivés</td>
<td>USDA + IITA</td>
<td>Ouest/PanAfrique</td>
</tr>
<tr>
<td>Manioc</td>
<td>ILTAB par l'IITA</td>
<td>Afrique de l’Ouest</td>
</tr>
<tr>
<td>Dolique</td>
<td>UC Davis + IITA</td>
<td>Afrique de l’Ouest</td>
</tr>
<tr>
<td>Vaccin contre la peste bovine</td>
<td>UC Davis</td>
<td>Afrique de l’Est</td>
</tr>
<tr>
<td>Papayer</td>
<td>Cornell</td>
<td>Afrique de l’Est</td>
</tr>
<tr>
<td>Bananier</td>
<td>IPGRI via INIBAP</td>
<td>Afrique de l’Est</td>
</tr>
<tr>
<td>Vaccin contre la cowdriose</td>
<td>Université de Floride</td>
<td>Afrique du Sud</td>
</tr>
<tr>
<td>Bio-fortification</td>
<td>IARC + universités des USA</td>
<td>Pan-Afrique</td>
</tr>
<tr>
<td>Bio-sécurité</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impacts environnementaux du dolique</td>
<td>Université de Purdue via l'IITA</td>
<td>Afrique de l’Ouest</td>
</tr>
<tr>
<td>Impacts environnementaux du maïs</td>
<td>ICIPE</td>
<td>Est/Pan-Afrique</td>
</tr>
<tr>
<td>Bio-sécurité de la région sud de l’Afrique</td>
<td>ABSP + Afrique du sud</td>
<td>Sud</td>
</tr>
<tr>
<td>Plan régional de bio-sécurité</td>
<td>ABSP+ASARECA</td>
<td>Est/Centre</td>
</tr>
<tr>
<td>Sensibilisation/ détermination des priorités</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Etude détaillée des biotechnologies du CORAF</td>
<td>CORAF+IITA</td>
<td>Ouest</td>
</tr>
<tr>
<td>Détermination des priorités de l'ASARECA</td>
<td>ABSP+ASARECA</td>
<td>Est/Centre</td>
</tr>
<tr>
<td>Evaluation de l’impact économique</td>
<td>IFPRI + université de Purdue</td>
<td>Pan-Afrique</td>
</tr>
<tr>
<td>Vulgarisation des informations sur la biotechnologie</td>
<td>Université Tuskegee</td>
<td>Pan-Afrique</td>
</tr>
<tr>
<td>Elargissement de la population concernée par la biotechnologie</td>
<td>USDA + HBCUs</td>
<td>Sud/Est, Nigeria, Afrique du Sud, Zambie, Kenya</td>
</tr>
<tr>
<td>Programme d’évaluations bilatérales</td>
<td>ABSP + Mission de l’USAID</td>
<td>Ouganda</td>
</tr>
</tbody>
</table>

Source: Josette Lewis (USAID, communication personnelle).
Il semble qu’il n’y ait pas beaucoup de chevauchement entre les projets de biotechnologie financés par l’USAID et ceux indiqués pour les autres investisseurs du développement ni en fait entre les projets de l’USAID. Ceci parce que la plupart des projets financés par les autres donateurs concernent principalement la culture de tissus, alors que les projets de l’USAID sont plus à des niveaux de pointe comme la sélection assistée par marqueurs ou la transformation génétique pour les capacités de recherche et de développement. La formation de troisième cycle soutenue par la Fondation Rockefeller aurait pu être intégrée dans le soutien financier pour la recherche et le développement de l’USAID mais le soutien de la Fondation Rockefeller concerne le riz, un produit de base qui ne reçoit pas actuellement de soutien pour la recherche et le développement de la part de l’USAID. En égard à la demande de soutien de formation des NARS, l’USAID est encouragée à inclure les bourses universitaires de troisième cycle dans ses projets de soutien à la recherche et au développement. De telles formations doivent être réalisées en collaboration avec des institutions locales mais avec un financement pour des formations de courte-durée dans des instituts de recherches de pointe quand un besoin pour de telles formations est identifié. Bien qu’un plus grand soutien des investisseurs pour le développement soit demandé pour la recherche et le développement, il semblerait que (comme cela est fait par l’USAID et la Fondation Rockefeller) d’autres investisseurs dans le développement doivent aussi canaliser les ressources dans la construction de capacités en biotechnologie et créer une prise de conscience du public.

Nouvelles institutions qui soutiennent le CORAF/WECARD dans le domaine des biotechnologies

Le CORAF/WECARD doit surveiller les nouvelles institutions ci-dessous qui pourraient l’aider dans ses efforts de construction de capacités.

Agence Africaine pour les biotechnologies (AAB - African Agency for Biotechnology)

L’AAB a été créée en 1992 par 16 Ministres africains responsables de la science et de la technologie. Elle est devenue fonctionnelle en 1997 avec la création de son bureau principal à Alger. Elle a un conseil d’administration des Etats membres au niveau ministériel, un comité scientifique et technique et un secrétariat. Les objectifs sont de:

- Renforcer les capacités nationales des pays membres en matière de biotechnologie;
- Coordonner les programmes de recherche et de développement en biotechnologie;
• Encourager la production, la distribution et la commercialisation de produits issus des biotechnologies tout en assurant leur développement durable et la protection de l’environnement;
• Développer et harmoniser les lois de bioéthique, bio-sécurité, des droits de propriétés intellectuelles et sur les inventions.
L’AAB a des problèmes financiers et n’est pas actuellement au premier plan. Il est prévu que son principal donateur serait la Banque Africaine de Développement. Elle propose l’établissement d’un programme africain de développement pour la biotechnologie commerciale dans lequel les pays membres travailleront ensemble pour obtenir un financement ce qui permettra de mettre en œuvre des projets de biotechnologie proches de la commercialisation.

Fondation Africaine pour la Technologie Agricole (AATF - African Agricultural Technology Foundation)
L’AATF sera inaugurée début 2003. L’AATF est un partenariat entre le secteur public et le secteur privé, dirigé par les africains, qui a été créé pour répondre aux besoins en technologie des fermiers africains pauvres qui sont dans leur majorité des petits exploitants. Ces technologies peuvent être non brevetées, détenues par le secteur public ou être la propriété d’institutions du secteur privé. La technologie brevetée sera obtenue sans royalties par des détenteurs de bonne volonté du secteur privé pour la sous-louer aux institutions de recherches qui devront l’adapter aux conditions locales en fonction des besoins. Toute la chaîne de développement et de transfert, du développement initial du produit à sa commercialisation, sera abordée. La Fondation Rockefeller et l’USAID ont fourni les fonds de départ à l’AATF. L’AATF se compose d’un Comité consultatif d’élaboration (DAC) comprenant les chefs des NARS africains, la Fondation Rockefeller et des autres donateurs comme l’USAID, les compagnies privées de biotechnologies de l’OCDE, les compagnies africaines de semences, le DANIDA et le DfID. La localisation du bureau central reste à déterminer. Le directeur responsable de la mise en œuvre est le Dr Eugene Terry, ancien Directeur-général du WARDA.

Lacunes et perspectives pour l’intervention de la biotechnologie en Afrique de l’Ouest et du centre
Les lacunes et les perspectives pour l’intervention des biotechnologies peuvent être déduites à partir des activités en cours ou planifiées dans la recherche et le développement, la bio-politique, la sensibilisation du public et la revitalisation du secteur privé des biotechnologies.
Recherche pour le développement

Les matières premières pour lesquelles une recherche est en cours ou est planifiée comme cela est indiqué plus tôt dans le rapport sont résumées dans la table 28.

La plus grande partie de la recherche sur les racines et les tubercules, Musa ssp. et les arbres cultivés a pour but la propagation de masse par culture de tissus. Les quelques laboratoires du NARS qui sont équipés réalisent la caractérisation du germplasme ainsi que du diagnostic moléculaire sur ces plantes cultivées. Un tout petit nombre de laboratoires travaille sur l’identification de marqueurs QTL (Locus de Caractères Quantitatifs) pour faciliter l’amélioration et la sélection. Pour cela seuls quatre laboratoires, le CRIG au Ghana, le CNRA en Côte d’Ivoire, et le CERAAS au Sénégal, travaillant en collaboration avec la faculté des sciences UCAD ont cette capacité. Ainsi, pour combler une lacune en recherche en biotechnologie, il serait approprié d’aider graduellement ces laboratoires qui sont au stade de la culture de tissus à aller jusqu’à celui de la caractérisation de germplasme. Alors que ceux travaillant actuellement sur la caractérisation changeraient pour l’identification de marqueurs spécifiques pour un ou un groupe de gènes désirés. Les trois ou quatre laboratoires faisant de la recherche en QTL pourraient donner un soutien supplémentaire pour la formation et l’équipement ainsi que créer des liens vers les laboratoires de pointe de la sous-région, par ex. l’IITA, pour entreprendre de la recherche en biotechnologie afin de résoudre les problèmes insolubles de résistances aux stress biotiques et abiotiques. Les plantes cultivées présentant de sérieux problèmes de maladies et de nuisibles, actuellement étudiés par les approches conventionnelles mais qui pourraient bénéficier de la transformation génétique sont le coton, le dolique, le maïs, le sorgho, le manioc, le cacao et la noix de coco.

Pour quelques-unes de ces espèces, la méthode de transformation a été développée ailleurs et a seulement d’être adaptée aux conditions locales. Le travail sur la transformation génétique doit être lié au développement et à la capacité de mettre en œuvre les recommandations de bio-sécurité. Le soutien de l’USAID et les autres investisseurs du développement aux biotechnologies lorsqu’ils sont liés avec un IARC ou un laboratoire de pointe devrait rapidement promouvoir le transfert de technologie dans les domaines critiques des NARS par l’incorporation des bourses de troisième cycle dans de tels projets de biotechnologie. Pour la culture de tissus, le développement de protocoles pourrait être problématique et demander beaucoup de temps. Quelques laboratoires pourraient être désignés «laboratoires d’élite pour la culture de tissus» et être équipés pour entreprendre le développement de protocole qui seraient utilisés par les NARS.
Table 28. Espèces recevant l’attention des biotechnologies en Afrique de l’Ouest et du centre

<table>
<thead>
<tr>
<th>Espèces</th>
<th>Contraintes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plantes</td>
<td></td>
</tr>
<tr>
<td>Plantes cultivées à racines ou tubercules comestibles</td>
<td>Matériel de plantation, maladies, caractérisation du germplasme</td>
</tr>
<tr>
<td>Manioc (Manihot esculenta)</td>
<td></td>
</tr>
<tr>
<td>Ixéna (Dioscorea spp.)</td>
<td></td>
</tr>
<tr>
<td>Chou Caraïbe (Xanthosoma sagitifolium)</td>
<td></td>
</tr>
<tr>
<td>Patate douce (Ipomea batatas)</td>
<td></td>
</tr>
<tr>
<td>Pomme de terre (Solanum tuberosum)</td>
<td></td>
</tr>
<tr>
<td>Musa spp.</td>
<td></td>
</tr>
<tr>
<td>Bananier (Musa spp. AAA)</td>
<td>Matériel de plantation, maladies, caractérisation du germplasme</td>
</tr>
<tr>
<td>Plantain (Musa spp. AAB)</td>
<td></td>
</tr>
<tr>
<td>Céréales</td>
<td></td>
</tr>
<tr>
<td>Maïs (Zea mays)</td>
<td>Caractérisation du patrimoine génétique, Striga, sécheresse, maladies, insectes, autres mauvaises herbes</td>
</tr>
<tr>
<td>Sorgho (Sorghum bicolor)</td>
<td></td>
</tr>
<tr>
<td>Riz (Oryza sativa)</td>
<td></td>
</tr>
<tr>
<td>Pennisetum (Pennisetum glaucum)</td>
<td></td>
</tr>
<tr>
<td>Légumineuses</td>
<td></td>
</tr>
<tr>
<td>Dolique (Vigna unguiculata)</td>
<td>Caractérisation du patrimoine génétique, insectes, sécheresse</td>
</tr>
<tr>
<td>Arbres cultivés</td>
<td></td>
</tr>
<tr>
<td>Elaëis (Elaes guineensis)</td>
<td>Matériel de plantation, caractérisation du patrimoine génétique, insectes, maladies</td>
</tr>
<tr>
<td>Noix de coco (Cocos nucifera)</td>
<td></td>
</tr>
<tr>
<td>Cacao (Theobroma cacao)</td>
<td></td>
</tr>
<tr>
<td>Karité (Vitellaria paradoxa)</td>
<td></td>
</tr>
<tr>
<td>Noix de Kola (Cola acuminata)</td>
<td></td>
</tr>
<tr>
<td>Caoutchouc (Hevea brasiliensis)</td>
<td></td>
</tr>
<tr>
<td>Plantes cultivées à fibre</td>
<td>Insectes, matériel de plantation</td>
</tr>
<tr>
<td>Coton (Gossypium spp.)</td>
<td></td>
</tr>
<tr>
<td>Kenaf (Hibiscus canabinus)</td>
<td></td>
</tr>
<tr>
<td>Animaux</td>
<td></td>
</tr>
<tr>
<td>Bétail</td>
<td>Diagnostic, maladies (vaccins), caractérisation</td>
</tr>
<tr>
<td>Mouton</td>
<td></td>
</tr>
<tr>
<td>Chèvre</td>
<td></td>
</tr>
<tr>
<td>Volaille</td>
<td></td>
</tr>
<tr>
<td>Autres</td>
<td></td>
</tr>
<tr>
<td>Micro-organismes</td>
<td>Isolement, caractérisation et production d’inoculum (fixation d’azote et fermentation des aliments)</td>
</tr>
</tbody>
</table>
Les programmes de recherche en biotechnologie animale en cours ou prévus par les NARS d’Afrique de l’Ouest ou du centre pourraient bénéficier d’une collaboration avec l’ILRI par la formation, la recherche en collaboration, le développement et le transfert de protocoles de recherche, etc… dans le diagnostic, la caractérisation moléculaire du bétail et des animaux de basse-cour et leur lien avec un travail d’amélioration et de production de vaccins recombinants. Par exemple, le Mali demande une aide pour développer un vaccin recombinant contre la pleuropneumonie bovine contagieuse (CBPP). Quelques propositions de collaborations avec l’ILRI à un donateur pour aider le Mali à développer ce vaccin dans ses laboratoires seraient très souhaitables. Le projet de vaccin contre la cowdriose pour le sud de l’Afrique, financé par l’USAID, est d’un grand intérêt pour l’Afrique de l’Ouest et du centre. Il faut réfléchir à un moyen d’étendre ce projet à la sous-région afin de tester sa puissance dans cette zone géographique et d’y faire les modifications nécessaires. Cette évaluation devrait se faire en collaboration avec celle entreprise par le CIRDES (Bobo Dioulasso, Burkina Faso) qui travaille avec la Guadeloupe. L’ILRI pourrait apporter son aide dans tous ces programmes avec le soutien d’investisseurs dans le développement.

Les contraintes identifiées pour la recherche en biotechnologie dans les NARS (table 18), la formation est mentionnée comme la priorité numéro un. L’initiative prise par la Fondation Rockefeller pour une formation de troisième cycle via l’attribution de bourses doit être imitée mais elle pourrait être modifiée pour que ces formations soient autant que possible localisées dans les universités locales et que le partage des équipements pour la formation se fassent avec les instituts locaux équipés tout en réservant la possibilité d’une formation spécialisée dans les laboratoires de pointe si elle s’avère nécessaire. Comme cela a été conseillé précédemment, tout financement de recherches en biotechnologie devrait comprendre une provision interne pour les bourses de formation de troisième cycle. Une formation courte non-universitaire pour les chercheurs et les techniciens comme celle offerte par l’IITA devrait être encouragée. Mais dans les régions où les NARS ne peuvent offrir une telle formation, elles devraient être encouragées à le faire avec l’appui de l’IITA si nécessaire. Un tel arrangement est en discussion entre l’IITA et le Département de Botanique de l’université du Ghana pour une formation sous-régionale en culture de tissus. En dehors du financement, le manque de techniciens pour réparer les équipements de laboratoire et de pièces détachées était classé comme une contrainte importante de la biotechnologie. L’USAID et d’autres investisseurs appropriés pour le développement devraient examiner la possibilité d’un soutien périodique, une formation pratique en laboratoire pour l’instrumentation avec un mécanisme pour faciliter l’acquisition de pièces détachées pour les laboratoires. Le problème de l’équipement de laboratoire pourrait être fortement diminué si les NARS apprenaient à formuler de bonnes propositions de financement aux investisseurs pour le développement. Invariablement, les projets approuvés auront les équipements et les produits de consommation dont ils ont besoin. La plupart des laboratoires les mieux dotés de la sous-région sont équipés de cette façon. Les propositions écrites de projets doivent comprendre plus de formation dans le pays en collaboration avec quelques scientifiques compétents des...
NARS de la sous-région qui agiront comme spécialistes en plus d’autres qui devront venir de l’extérieur.

Bio-politique

Les questions politiques discutées ici sont en rapport avec la politique en biotechnologie, la construction de capacités en bio-sécurité et la compétence en propriété intellectuelle. Exception faite du Nigeria, aucun des pays de la sous-région n’a développé un document de politique pour les biotechnologies afin de le guider dans l’établissement de priorités et l’identification de cadres institutionnels pour promouvoir la capacité en biotechnologie. L’aide des investisseurs dans le développement est clairement nécessaire dans tous ces pays afin de réaliser une évaluation indispensable et d’aider à établir une priorité des actions. La Côte d’Ivoire a institué un corps pour entreprendre ce travail alors que le Mali organisait un atelier de travail en juin 2002 pour commencer le processus. La mission de l’USAID au Mali et la Fondation Syngenta, qui est active dans ce pays, pourrait donner au Mali, l’aide nécessaire pour formuler cette politique et être capable d’harmoniser les besoins institutionnels pour la biotechnologie dans ce pays. Toutes les mesures de construction de capacités en bio-sécurité devraient être accompagnées par le renforcement nécessaire des capacités en biotechnologie. Actuellement un nombre croissant de gouvernements de la sous-région semble concerné plus par les questions de bio-sécurité que par la construction des capacités nécessaires afin d’obtenir des produits issus de la biotechnologie pour l’ensemble de leurs citoyens dans le cadre de protocoles de bio-sécurité mis en place. Dans tous les cas, sans capacité en biotechnologie, aucune évaluation ou gestion efficace des risques ne peut être faite. N’importe quel programme d’investisseurs du développement ou de gouvernements pour résoudre la capacité en bio-sécurité devrait aussi développer la capacité de recherche et de développement des biotechnologies. Les lacunes dans les capacités en bio-sécurité à combler sont identifiées dans la table 21. Les pays de la sous-région se trouvent à des stades de développement de leur loi de bio-sécurité différents. Ceci dicte la quantité et la nature de l’aide nécessaire. Le Cameroun, la Côte d’Ivoire et le Nigeria qui sont avancés et sur le point de légiférer, auront besoin d’aide pour l’implémentation des lois. La possibilité de tester leurs lois sur une technologie GM qu’ils ont développé, comme cela a été le cas avec le Kenya, est une bonne opportunité pour les pays. Le Ghana aura besoin d’aide pour que différents ateliers de travail et de débats publics au sujet de la version préliminaire du document de grandes lignes aient lieu avant de procéder à la soumission au Cabinet via le Ministère des sciences de l’environnement et des technologies dans sa route vers le parlement. Le Burkina Faso, le Mali et le Sénégal sont sur le point de soit mettre en place un comité de révision (le Mali et Sénégal) soit de créer le comité pour travailler (Burkina Faso). Pour ces pays, des forums d’information de base pour le public devraient être organisés puisqu’un comité est désigné pour commencer à travailler. A tous les stades, un financement sera nécessaire pour accélérer l’action sous forme de
réunions, ateliers de travail, honoraires et documentation entre autres. Pour avoir du personnel qualifié, il sera nécessaire d’obtenir le soutien d’actionnaires du développement. L’UNEP/GEF est une source supplémentaire de financement. Comme cela est montré ailleurs dans ce rapport, tous les pays remplissent les conditions nécessaires pour obtenir des fonds de l’UNEP/GEF même si le Cameroun est le seul à avoir ratifié le protocole. Au Mali le protocole vient seulement de quitter le Cabinet pour le Parlement alors qu’au Ghana, il est au niveau du Cabinet. La formation en bio-sécurité des NARS est la plus faible de la région (Table 3). Un effort concerté doit être mis en place pour répondre à ce point faible.

Propriété Intellectuelle

Leçons du processus de développement d’un cadre régional de biotechnologie et de bio-sécurité fait par l’ASARECA

Une des attributions de la mission actuelle du CORAF/WECARD est de développer des lignes directrices pour aider à entreprendre une fixation des priorités de recherches en biotechnologie et de développement dans une perspective régionale. L’ASARECA entreprend un processus similaire et il est plus avancé que celui du CORAF/WECARD. Une étude du processus de planification de l’ASARECA pourrait faciliter l’approche du CORAF/WECARD pour atteindre un but similaire. Les informations sur le processus de planification de l’ASARECA proviennent en grande partie de discussions avec le Dr Josette Lewis de l’USAID à Washington et des présentations à la réunion, qui vient de se terminer, des partenaires du programme ASARECA sur la biotechnologie (17-19 juin 2002) ainsi que des discussions personnelles avec le coordinateur de la biotechnologie à l’ASARECA, le Dr Christopher K. Ngichabe.
Depuis 1998, le comité des directeurs (CD) de l’ASARECA demandait l’aide des partenaires du développement afin de commander un document d’information qui évaluerait les opportunités potentielles pour la région découlant du programme de biotechnologie et de bio-sécurité sous l’égide de l’ASARECA et identifierait les stratégies pour développer ce programme. L’étude, financée par l’USAID et l’UNDP, a été entreprise par l’ISNAR avec l’aide du programme de soutien à la biotechnologie en agriculture (ABSP) à l’université de l’État du Michigan. La mission du document d’information comprenait un examen et une documentation des activités en cours ou planifiées en biotechnologie dans la région et le rôle de l’ASARECA dans un programme régional de biotechnologie et de bio-sécurité. Le rapport devait aussi faire des recommandations pour la mise en place d’une équipe spéciale qui étudierait les résultats du rapport. Le consultant du rapport a recommandé une approche intégrée de la biotechnologie et de la bio-sécurité qui prendrait en compte les réseaux actuels. L’organisation d’une réunion basée sur les réseaux a été recommandée pour identifier les perspectives d’avenir et les besoins afin d’introduire et d’intégrer la biotechnologie dans les programmes en réseaux existants. Il faudrait donner la priorité aux réseaux de recherche intégrant la biotechnologie. Les implications financières pour mettre en œuvre et appliquer la législation de bio-sécurité doivent aussi être prises en compte. Un groupe de travail a été mis en place pour étudier le rapport afin de prendre les dispositions nécessaires. Un coordinateur de projet a été nommé pour assurer la réalisation des tâches identifiées par le réseau. Le rapport a été soumis comme prévu et durant la réunion de septembre 1999 du comité des directeurs de l’ASARECA, les directeurs ont recommandé la création d’un groupe de travail et procédé au développement du programme de biotechnologie et de bio-sécurité. Le besoin d’adopter une approche régionale a été souligné par le fait que:

- La compétence individuelle des NARS à entreprendre des recherches indépendantes en biotechnologie est généralement faible étant donné les limitations en ressources humaines et en infrastructure. Plusieurs NARS, cependant, ont conduit une recherche en biotechnologie en collaboration avec les laboratoires de pointe qui pourraient avoir un impact régional s’ils étaient adaptés et dissipés dans tout l’ASARECA.
- L’IARC développe des outils de recherche en biotechnologie et des plantes génétiquement modifiées qui pourrait aussi aider à se pencher sur les priorités régionales et compléter la recherche en cours dans les réseaux de produits de base s’ils sont intégrés dans l’agenda de l’ASARECA.
- Etant donné les ressources limitées tant au niveau national que des donateurs, il est improbable que les programmes nationaux soit capables de lancer des programmes significatifs en biotechnologie et ainsi la coopération régionale et le partenariat stratégique avec les instituts de pointe de recherche pourraient accélérer l’accès des régions aux outils et applications de la biotechnologie.
- Dans le domaine de la biotechnologie, seul un pays dans la région a actuellement une réglementation nationale de bio-sécurité. En absence de réglementation sur la bio-sécurité, les NARS n’auront pas accès aux
applications de la biotechnologie comme les plantes cultivées génétiquement modifiées ou les vaccins pour le cheptel.

• Avec le protocole de Carthagène récemment adopté, les pays devront créer des étapes pour adopter des systèmes de bio-sécurité qui permettront l’implémentation de cet accord. Les NARS devraient jouer un rôle clé dans ce processus étant donné que les applications agricoles de la biotechnologie seront les plus touchées par les régimes de bio-sécurité. De plus, le développement des systèmes de bio-sécurité devrait incorporer une expertise phytosanitaire et technique concomitante qui se trouve dans les NARS. Un programme régional qui comprend la construction de capacité en bio-sécurité permettra aux NARS de participer à l’élaboration de la politique de bio-sécurité.

• La bio-sécurité demande une gamme d’expertises techniques dans des domaines comme l’écologie, la biologie moléculaire, la pathologie animale et végétale en autres. Etant donné que beaucoup de pays dans les régions de l’Est et du centre de l’Afrique n’ont pas suffisamment de compétences techniques au niveau national, le développement d’un système de coopération régional pour les études détaillées en bio-sécurité améliorerait la rigueur de la réglementation en bio-sécurité.

• De plus, de manière analogue au programme actuel de l’ASARECA pour harmoniser et rationaliser la réglementation des semences dans la région, l’harmonisation de la réglementation en bio-sécurité améliorerait la dissémination régionale des plantes cultivées et des vaccins dérivés de la biotechnologie et réduira les barrières des investissements du secteur privé dans ces domaines.

Buts

Les buts de la phase de développement du programme étaient de jeter les fondations pour et puis d’examiner les buts et les stratégies spécifiques pour un programme de l’ASARECA afin d’intégrer la biotechnologie dans les activités régionales de recherches et de développer une approche régionale de réglementation en bio-sécurité. En particulier, les objectifs étaient de:
- Tenir un dialogue large entre les partenaires locaux dans la communauté de la recherche et de la réglementation pour sensibiliser les parties prenantes aux questions et construire un consensus vers un programme en biotechnologie et bio-sécurité;

- Développer une vision du rôle de l’ASARECA pour faciliter l’application des biotechnologies et le développement de systèmes de réglementation en bio-sécurité;

- Identifier les perspectives pour la recherche, l’adaptation des technologies existantes ou le transfert de technologie qui vont conduire à l’utilisation des biotechnologies en se penchant sur les contraintes prioritaires de la région. Ceci comprend l’identification des priorités, des perspectives d’adapter les recherches existantes dans la communauté internationale et l’identification d’un partenariat stratégique avec des institutions de pointe tant publiques que privées;

- Déterminer le mécanisme et la structure pour un programme régional de biotechnologie sous l’ASARECA;

- Développer le consensus pour certains buts spécifiques, l’approche et l’administration du développement d’une réglementation régionale de bio-sécurité;

- Déterminer les mécanismes et la structure d’un programme régional de bio-sécurité sous l’ASARECA;

- Développer des plans de travail, des budgets et une proposition complète de mise en œuvre de programmes de biotechnologie et de bio-sécurité pour la soumission aux donateurs.

Activités spécifiques

Comme cela est mentionné plus haut, le secrétariat de l’ASARECA, avec les directives du comité des directeurs, a convoqué le groupe de travail Biotechnologie pour mettre en œuvre le plan de développement du programme. Ce groupe de travail s’est rencontré en septembre 2000 pour peaufiner les activités suivantes de l’agenda.

1. Groupe de travail – 10 membres représentant chacune des NARS, deux ou trois experts techniques externes et deux membres ex-officio y compris le secrétaire de l’ASARECA et le coordinateur Biotechnologie. Le groupe de travail a élu un président parmi ses représentants des NARS. Ce groupe planifie, surveille la mise en œuvre et prend les décisions stratégiques relatives au développement du programme régional. Le groupe de travail doit se rencontrer plusieurs fois au cours de l’année pour accomplir son travail.

2. Coordinateur Biotechnologie – pour aider le secrétariat de l’ASARECA dans le soutien administratif au groupe de travail, un coordinateur Biotechnologie a été embauché pour la phase de planification d’une année après 6 mois. Le coordinateur a pris ses premières responsabilités en exécutant les activités prévues par le groupe de travail comme commander des documents de référence, planifier des ateliers de travail régionaux,
récupérer les réunions du groupe de travail et finalement, écrire la proposition de programme pour sortir de cette phase de planification.

3. Document de base sur les options de la biotechnologie – ce document a aidé le groupe de travail à identifier les perspectives prioritaires de recherche, d’adaptation de technologie et de transfert de technologie. Pour faire cela, il a étudié en détail et fait la synthèse des perspectives prioritaires :

• définir les priorités nationales de recherches en agriculture,
• définir les priorités de recherches régionales actuelles de l’ASARECA,
• faire une liste des recherches existantes dans la communauté internationale qui sont applicables à l’ASARECA (le rapport de l’ABSP sur cela est déjà fourni),
• dessiner les bénéfices et les impacts potentiels de la biotechnologie dans les systèmes agricoles à partir des études et des données qui peuvent être disponibles ailleurs que dans les zones où la biotechnologie est déployée.

Les détails des activités du groupe de travail et les résultats de l’atelier de travail Biotechnologie sont présentés dans l’annexe 3.

Cadre sous-régional pour les biotechnologies et la bio-sécurité en Afrique de l’Ouest et du centre

Les processus de planification de biotechnologie et de bio-sécurité développés pour les pays membres de l’ASARECA sont très pertinents pour la sous-région du CORAF/WECARD et peuvent être adoptés avec les modifications nécessaires. Cependant, armé d’une connaissance préalable des procédures de l’ASARECA et ayant déjà exécuté les tâches clefs, le CORAF/WECARD peut faire plus de progrès rapides dans le processus de planification. Les tâches déjà terminées et rapportées ici sont :

• Un inventaire des projets de recherche en cours ou planifiés;
• Un inventaire des infrastructures de laboratoire de recherche et des ressources humaines disponibles;
• Identification des produits de base et des thèmes sur lesquels il faut faire de la recherche;
• Identification des contraintes des biotechnologies;
• Statut de la législation en bio-sécurité et main d’œuvre.

Les événements clés dans l’évolution du CORAF/WECARD et la structure de gestion créent un environnement permettant le développement d’un mécanisme sous-régional en biotechnologie et en bio-sécurité. Dans son plan stratégique de 2000, le CORAF/WECARD a identifié ses produits de base prioritaires et ses thèmes de recherche. Ce sont les produits de base et les thèmes susceptibles de bénéficier d’une intervention des biotechnologies. Les produits de base étudiés avec les outils modernes de la biotechnologie sont tous présents dans la liste des priorités du plan stratégique du CORAF/WECARD. Le CORAF/WECARD a défini un réseau de recherche étendu sous-régional qui a été essayé, testé et raffiné pendant
ses quinze ans d’existence. Il y a les centre de base, les pôles et les réseaux qui sont défini ci-dessous.

Centre de base. Un centre de base possède des capacités spéciales pour entreprendre une recherche et il est basé dans un système national. Les scientifiques des autres pays peuvent y travailler. Ici, la capacité n’existe pas dans les pays partenaires. La gestion des centres de base est autonome. Il peut obtenir des fonds directement des donateurs ou via le CORAF. Le CERAAS est un centre de base à Thies, Sénégal, ainsi que le CIRDES à Bobo Dioulasso, Burkina Faso.

Pôle. Les pays dans un pôle (habituellement 2-3) ont des capacités similaires mais sont coordonnés par un des NARS. Chaque pays partenaire travaille sur un thème spécifique dans le thème général, par ex. pour l’irrigation, chaque composant dans un pôle conduit des recherches dans un domaine précis. Par exemple, le Mali conduit la recherche sur la dégradation des terres alors que le Sénégal dirige la recherche dans le domaine de l’intensification de la production des céréales. La gestion du pôle est aussi autonome. Le CORAF est impliqué dans la recherche et la négociation de fonds pour les pôles, les centres de base et les réseaux. Leur gestion est autonome.

Réseaux. C’est une liaison de beaucoup de pays travaillant sur un produit de base ou un thème identique. Tous les 21 pays membres du CORAF peuvent appartenir au même réseau, par ex. le réseau ROCARIZ pour le riz ou le réseau WECAMAN pour le maïs. Les réseaux comme les centres de base et les pôles, ont des comités de direction qui sont des comités de gestion mais l’assemblée générale détermine l’orientation du réseau. Le comité de direction est responsable de cela dans les centres de base et les pôles.

Critères suggérés pour le cadre régional pour les biotechnologies

Actuellement, le CORAF/WECARD a 13 réseaux de recherche couvrant des produits de base et des thèmes variés, deux pôles (systèmes irrigués, basé au Mali et le développement des savanes basé au Tchad) et trois centres de base (CERAAS pour la sécheresse, le CIRDES pour le cheptel et l’ITC pour le bétail trypanotolérant). Les centres de base intègrent actuellement les outils moléculaires dans leur travail de caractérisation au niveau de l’ADN ou pour l’utilisation du diagnostic. L’intégration des biotechnologies dans les programmes des réseaux a été prévue avec le WECAMAN. Une proposition a été soumise par le réseau au CORAF/WECARD (pour approbation) afin de construire des capacités pour la recherche pour le développement de Striga et des germplasmes de maïs tolérant à la sécheresse. Les marqueurs ADN doivent être identifiés pour ces caractères et utilisés afin de faciliter l’amélioration et la sélection. Deux laboratoires du NARS (via un système d’appel d’offres) seront sélectionnés pour équiper et former tous les membres du réseau sur la compréhension et l’utilisation des techniques moléculaires dans l’amélioration du maïs. Les résultats des laboratoires sélectionnés seront
disponibles aux autres NARS du réseau pour les programmes d’amélioration. L’IITA va soutenir les laboratoires dans leurs activités de biotechnologie.

Classement des réseaux par priorité pour la sélection

Il est nécessaire de sélectionner 4 réseaux de recherche environ qui ont besoin un soutien spécial pour intégrer les activités de biotechnologie. Le but de l’intervention des biotechnologies devrait être bien défini avec le développement nécessaire des ressources humaines incorporées dans les programmes de recherche. Ces laboratoires, dont la plupart travaillent actuellement sur les plantes cultivées, devraient être aidés pour procéder à un travail en biologie moléculaire au moins jusqu’au stade de la sélection assistée par marqueurs. Un effort spécial devrait être fait pour qu’il y ait un laboratoire avec une capacité de diagnostic pour le cheptel ou de production de vaccin dans ceux qui seront sélectionnés. Un programme pour les diagnostics vétérinaires est prévu pour l’Institut de Recherches Vétérinaires National du Niger (NVRI - Nigerian National Veterinary Research Institute) avec un partenariat spécial pour la construction d’une capacité avec l’USAID. Ce laboratoire reçoit actuellement une aide financière du gouvernement français et de l’UNESCO. Un programme sur la fertilité des sols avec le laboratoire de microbiologie de l’IRD/UCAD au Sénégal comme pivot devrait être pris en compte.

Quelques autres suggestions:

- Pour les trois laboratoires (CERAAS, CRIG, CNRA) travaillant sur la cartographie des QTL en utilisant les marqueurs ADN, une aide pourrait être fournie pour régler avec précision cette recherche et entreprendre la transformation génétique si nécessaire. De tels laboratoires, et d’autres qui peuvent émerger par un effort national (comme celui qui a été développé au Nigeria), pourraient servir de centre de base avec des tâches sous-régionales spéciales sélectionnées par le CORAF/WECARD. Des bourses pourraient être accordées à des scientifiques pour travailler dans de tels laboratoires pour des périodes de durée déterminée. Ceci se fait actuellement au laboratoire CERAAS à Thies et au laboratoire de microbiologie des sols IRD/UCAD à Dakar (Sénégal). Tant la Côte d’Ivoire et le Nigeria prévoient des programmes similaires. Le CNRA en Côte d’Ivoire installe des équipements pour être capable d’accueillir 40 scientifiques d’un autre établissement à un moment donné.

- Tous les projets de soutien des biotechnologies ayant pour but d’améliorer des plantes ou des animaux devraient être compris dans un programme d’amélioration. La biotechnologie devrait être vue comme un complément des programmes actuels d’amélioration.

- Dans les régions où les laboratoires sélectionnés mettent en commun leurs équipements pour l’amélioration génétique, le soutien parallèle de laboratoires devrait être donné pour étudier les besoins de diagnostic moléculaire des produits de base.
Autant que possible, le soutien des biotechnologies pour les produits de base devrait être holistique pour considérer à la fois le développement primaire du produit et le processus en aval (fermentation, conservation en général, etc…).

Finalement la disponibilité constante d’eau propre à la consommation, d’électricité et les ressources humaines critiques devraient déterminer la localisation d’un laboratoire d’excellence.

Externalisation des services de biotechnologie

Il est nécessaire d’examiner l’externalisation de certains services des laboratoires moléculaires comme le séquençage et la production d’amorces vers un laboratoire qui possède un synthétiseur d’ADN. Il est aussi possible d’externaliser le travail de caractérisation moléculaire et de cartographie des gènes vers un laboratoire équipé dans la sous-région.

La gestion des nœuds/réseaux de biotechnologie

Les critères actuels de gestion du CORAF/WECARD avec des coordinateurs, des comités de direction, des comités techniques, indépendance, responsabilité etc., devraient être les critères pour guider la gestion des centres de réseaux choisis.

Critères de durabilité pour la biotechnologie.

Les besoins de produits chimiques de laboratoires, de fabrication d’équipement et de réparation localement doivent être examinés. Les réactifs biochimiques communs comme les enzymes, les gels et les équipements, y compris la verrerie, qui peuvent être produits localement devraient l’être. Il faudrait donner la formation nécessaire pour faire cela et sensibiliser les agences privées sensibilisées afin qu’elles se lancent dans la production commerciale et l’entretien de l’équipement pour l’industrie des biotechnologies. Le Complexe Sheda des Sciences et des Technologies (SHESTCO - Sheda Science and Technology Complex) à Abuja (Nigeria) a construit un atelier de travail pour la production de l’équipement de laboratoire afin de fabriquer l’équipement scientifique. Au Ghana, l’Institut des Recherches Industrielles (the CSIR-Institute of Industrial Research) a une unité d’instrumentation scientifique qui produit la verrerie de laboratoire mais ne reçoit pas un parrainage adéquat. Une structure équivalente dans la sous-région est nécessaire pour produire localement les réactifs clés. Le laboratoire de biotechnologie de l’Institut de Technologie des Aliments (ITA - Institute of Food Technology) à Dakar (Sénégal) fabrique l’équipement de fermentation pour l’industrie locale et a formé les artisans locaux pour les fabriquer. Ces exemples sont très stimulants. Un faible savoir-faire de vente a entravé le parrainage de ces centres de fabrication.
Formation

La formation doit être un composant de l’activité de réseau et devrait couvrir à la fois la formation de courte durée et la formation de troisième cycle de longue durée. Le budget pour les activités de recherche du réseau devrait contenir la composante formation.

Autres avis sur les centres d’excellence.

Les points de vue des NARS et des autres partenaires ont été recherchés concernant ce sujet mais les réponses étaient peu nombreuses et variées. Quelques-unes soutiennent la création de centres d’excellence mais elles ne donnent aucune indication sur la forme qu’ils devraient prendre. Il a été suggéré que les capacités nationales nécessitent en premier un renforcement. Un centre virtuel de biotechnologie ayant seulement un rôle de dissémination de l’information a été proposé par un NARS. Selon cet arrangement, n’importe quel centre en voie de constitution pourrait entreprendre des activités spécialisées en biotechnologie mais celles-ci seraient coordonnées et disséminées électroniquement par une institution choisie de la sous-région. D’autres, c.-à-d., le WARDA et l’IITA, ont suggéré la création d’un laboratoire de génomique pour toute l’Afrique. Les détails des points de vue sont aussi dans l’annexe 1.

Harmonisation du soutien de l’USAID pour les laboratoires nationaux avec pour but la construction de capacités sous-régionales.

Le soutien de l’USAID pour les laboratoires nationaux est approprié depuis qu’une forte capacité NARS est nécessaire pour un cadre sous-régional viable. Il a cependant été suggéré que le soutien de l’USAID doive graduellement accorder de l’importance aux centres choisis du réseau des NARS. Ceci permettrait de construire une capacité dans les NARS tout en servant une orientation régionale.

Critères pour un cadre régional en bio-sécurité

Un cadre national de bio-sécurité efficace est une condition préliminaire nécessaire pour l’introduction et la mise en œuvre avec succès d’un cadre régional. Les cadres et les lignes directrices nationales font partie intégrante de la législation de bio-sécurité. Jusqu’à présent, aucun des pays n’a une législation en place bien que l’on en soit à une étape avancée dans le cas du Cameroun, de la Côte d’Ivoire et du Nigeria comme cela a dit précédemment. Le cadre de bio-sécurité proposé pour la sous région de l’ASARECA est général et peut être adopté par le CORAF/WECARD. La cadre étudié en détail plus tôt dans ce rapport considère le

- Au Nigeria, le Service National de Quarantaine des plantes (NPQS - National Plant Quarantine Service) utilise couramment la culture de tissus quand elle est appropriée pour contrôler le matériel de plantes importé multiplié végétativement. Il est prévu d’utiliser des outils de biotechnologie plus sophistiqués dans le futur pour faciliter le travail de quarantaine des plantes.
- Au Mali, des préoccupations ont été émises au sujet des pratiques de quarantaine des plantes qui empêchent la libre circulation des semences. Des discussions ultérieures avec des experts dans la gestion de la santé des plantes à l’IITA ont révélé que la situation au Mali est le reflet de la présence d’officiers de quarantaine des plantes mal équipés et mal formés dans les procédures modernes de diagnostic des plantes. Cette situation n’est pas spécifique au Mali mais largement répandue dans la sous-région. L’IITA a prévu de l’étudier mais n’a pas obtenu encore le soutien nécessaire de donateurs en développement pour entreprendre cette tâche. Le temps est peut-être venu de ré-examiner la proposition de l’IITA

Pour relancer l’application des procédures de bio-sécurité dans les pays qui n’ont pas de législation, il est proposé (Kitch et al. 2002) qu’un cadre provisoire soit mis en œuvre en utilisant les lignes directrices de la bio-sécurité et le système de permis existant pour les autorisations comme la loi sur les quarantaines. Ceci serait entrepris pendant que la législation pour le cadre final serait développée. Cette approche est intéressante à adopter pour les pays respectifs. Les recommandations finales proposées pour le cadre des biotechnologies dans la sous-région sont:
• Adopter le cadre général proposé pour la sous-région de l’ASARECA
• Harmoniser les cadres de bio-sécurité avec ceux de l’IAPC et les services nationaux de quarantaine des plantes.
• Initier un programme de formation sur les procédures d’administration de la bio-sécurité.
• Aider les pays qui n’ont pas de cadre de bio-sécurité et législation à faire les avancées nécessaires sur ces deux points.
• Harmoniser les cadres des pays et établir un mécanisme de bureau d’échange sous-régional pour la bio-sécurité
• Initier un programme de formation et réformer la quarantaine réglementaire dans la sous-région pour un service sanitaire et phytosanitaire efficace.
• Implémenter de manière provisoire un cadre sous un acte de réglementation des plantes qui existera durant le développement de la législation.

Sensibilisation du public.
La sensibilisation/information du public est un facteur clé pour promouvoir l’achat de la biotechnologie. Une série de séminaires de création de la sensibilisation et une attitude très préventive envers les médias des NARS et des agences gouvernementales sembleraient appropriées. Les médias devront être aidés par une contribution aux grandes lignes des articles, l’organisation d’ateliers de travail en biotechnologie et en bio-sécurité spéciaux, le financement de programmes de radio et de télévision et l’écriture des textes des documentaires qui seront filmés par les médias. Il sera peut-être nécessaire de financer de tels documentaires par un paiement comptant ou la mise à disposition d’équipement. Les ONG qui jouent un rôle d’avocat pour les biotechnologies devraient être encouragées par un financement de leurs activités. Les NARS actives dans le domaine de la biotechnologie devraient organiser des visites périodiques de leurs laboratoires pour les étudiants des lycées afin des les sensibiliser et de démystifier la biotechnologie. Les organisations de fermiers devraient aussi bénéficier de telles visites édifiantes.

Questions de droits de propriétés intellectuelles
Il y a une pénurie de connaissances sur les questions des droits de propriété intellectuelle au sein des NARS dans la sous-région, spécialement celles en relation avec les produits végétaux et les technologies. Des ateliers de travail nationaux et sous régionaux périodiques devraient être tenus sur le sujet pour le bénéfice des NARS. Les questions relatives au partage des bénéfices devraient être une part des ateliers de formation. Des employés experts des organisations internationales pertinentes comme le WIPO et les employés administratifs des agences mettant en œuvre les questions de droits de propriétés intellectuelles pourraient être inclus dans les programmes de formation.
Rôle du CORAF/WECARD dans le cadre sous-régional

Le rôle du CORAF/WECARD dans le cadre sous-régional pour la biotechnologie pourrait être résumé comme suit en :

- Coordonnant la formation
- Aidant les pays à développer leur cadre de bio-sécurité
- Aidant les pays à développer leur politique de biotechnologie
- Facilitant les activités de biotechnologie et de bio-sécurité en les finançant
- Mettant en place des schémas d’allocation concurrentielle permanents
- Jouant un rôle traditionnel de surveillance
- Disséminant l’information
- Jouant le rôle d’avocat.

Devant la faible sensibilisation sous-régionale des activités du CORAF/WECARD révélée par l’étude détaillée, une aide spéciale pour renforcer ses capacités dans ce domaine est nécessaire.

Le groupe de travail du CORAF et l’atelier de travail des partenaires.

Il est escompté que le CORAF/WECARD reçoive ce rapport et nomme un groupe de travail pour l’étudier et l’utiliser comme base pour l’atelier de travail des partenaires qui devra développer un cadre régional pour la biotechnologie et la bio-sécurité. Le groupe de travail jouera un rôle actif aidé par un coordinateur (à recruter) et l’IITA (en tant qu’agence de soutien) pour organiser l’atelier de travail. Le coordinateur va s’assurer que le suivi de ces actions sera fait. Le groupe de travail, comme pour l’ASARECA, sera responsable de la surveillance de la planification du programme, de sa mise en œuvre et des décisions cruciales en rapport avec le programme sous-régional de biotechnologie et de bio-sécurité.

Composition du groupe de travail

Il y a 21 pays membres du CORAF/WECARD. Il serait souhaitable que chaque pays puisse être représenté dans le groupe de travail mais cela serait difficile à gérer. Il est cependant proposé que le groupe de travail comprenne un représentant de chacun des sept pays étudiés et une sélection au hasard de cinq des pays restants pour que 12 pays soient représentés. De plus, il devrait y avoir trois experts techniques dont un de l’IITA, un représentant du secrétariat du CORAF/WECARD et un coordinateur nommé par le CORAF/WECARD. Ce qui fait un total de 17. Le groupe devrait être habilité à recruter pour être aidé dans ses délibérations concernant des thèmes spécifiques. Une phase de planification d’une année est envisagée nécessitant l’embauche d’un coordinateur de programme à plein temps durant cette phase. Etant donné l’immensité de la sous-région et le fait que la majorité ne puisse
pas être étudiée en détail dans la mission actuelle, des contacts supplémentaires seront nécessaires pendant le processus de planification pour obtenir le concours de tous les pays. Le coordinateur de programme va exécuter toutes les activités du processus de planification y compris la collation des rapports, le mise en route d’une mission d’experts et la proposition finale émanant des délibérations de tout le groupe de travail. Un atelier de travail de trois jours pour les partenaires au sens large est proposé pour entreprendre les tâches suivantes:

- Recevoir les réactions du groupe de travail vis-à-vis du rapport du coordinateur et les attentes pour un programme sous-régional sur la biotechnologie et la bio-sécurité.
- Déterminer les priorités de la recherche et du développement pour un programme sous-régional sur la biotechnologie et la bio-sécurité
- Définir le cadre sous-régional pour la biotechnologie et la bio-sécurité
- Etablir le quantum et la nature du soutien nécessaire pour exécuter le cadre
- Évaluer la structure de gestion et le rôle du CORAF/WECARD dans le cadre sous-régional.
- Discuter de tout sujet pertinent pour l’implémentation durable du cadre sous-régional développé.

Proposition de partenaires à inviter pour le forum sous-régional.

La centaine de participants devraient être composée de 17 membres des groupes de travail (GT), 28 représentants des pays CORAF/WECARD (autres que ceux des GT), un du secrétariat du CORAF/WECARD, trois employés de l’USAID, trois employés des sources de financement (qui pourraient être invités à donner des conférences durant la session plénière), six employés des investisseurs en développement (c.-à-d., la Fondation Rockefeller, la Banque Africaine de développement, le DANIDA, l’Union Européenne, le SIDA, le CIDA, l’IDRC et le DFID, entre autres), trois employés de l’UNDP, la FAO, l’ECA, la FARA, l’Union Africaine (STRC, IAPC), quatre des centres du CGIAR autres que l’IITA travaillant en biotechnologie dans ou pour la sous-région (c.-à-d. WARDA, ILRI, ICRISAT), du personnel de l’IITA (qui pourrait participer activement dans le comité d’organisation si nécessaire) et le secteur privé via les représentants des compagnies de semences et ceux du réseau des semences de l’Afrique de l’Ouest (WASNET). Les autres sont des représentants des importateurs/fabricants d’équipement de laboratoire et des chimistes/ingénieurs chimistes, représentants des médias (et pas seulement du pays dans lequel l’atelier se déroule), des ONG, des groupes de fermiers, des employés de l’organisme national de quarantaine végétale, des partenaires de développement des biotechnologies (AATF, ARCT, AAB) et un représentant du conseil en brevet/registre général. Il est proposé que cet atelier et les suivants ainsi que les réunions du groupe de travail se déroulent au bureau central de l’IITA à Ibadan. Il est également possible que les ateliers de travail aient lieu à
l’IITA à Ibadan alors que les réunions du groupe de travail auraient lieu au secrétariat du CORAF/WECARD à Dakar (Sénégal).

Groupes de discussion proposés pour le forum sous-régional

Les groupes de discussion proposés sont :
- Groupe 1. Plantes cultivées
- Groupe 2. Bétail
- Groupe 3. Microbiologie (sol et fermentation des aliments)
- Groupe 4. Politique, bio-sécurité et propriété intellectuelle
- Groupe 5. Administration, finance et gestion du programme du CORAF/WECARD
- Groupe 6. Sensibilisation du public et secteur agro-industriel
- Groupe 7. Questions de durabilité : fabrication de l’équipement et des réactifs de laboratoire

Proposition d’attribution pour le groupe de discussion

Ceci pourrait être inclus dans la mission large du groupe de travail ainsi que comme sujets pour l’atelier de travail de l’ASARECA si cela est opportun. Les attributions pour les trois groupes de discussions (un pour les plantes cultivées, un pour le bétail et le dernier pour la microbiologie) seront :

- Commenter les priorités pour la recherche et le développement du secteur des plantes cultivées et de faire les améliorations nécessaires. Ceci peut inclure l’esquisse d’une liste des espèces prioritaires et des thèmes avec les contraintes et les interventions.
- Discuter sur le cadre des groupes de travail sous-régionaux pour la biotechnologie et la bio-sécurité et faire les modifications nécessaires.
- Evaluer les besoins de construction de capacités soumises par le groupe de travail et faire les recommandations nécessaires.
- Suggérer des possibilités de projets pilotes de recherches et des modalités de transfert vers le secteur privé.
- Recommander des liens efficaces avec différents partenaires.
- Déterminer tout autre sujet pertinent pour l’implémentation durable des résultats du groupe de délibération et suggérer les étapes suivantes.

Les attributions du groupe de discussion sur la politique, la bio-sécurité et les droits de propriété intellectuelle seront :

- Commenter les buts et le cadre de bio-sécurité proposé
- Suggérer des voies pour une harmonisation efficace des lignes directrices de bio-sécurité avec les réglementations sanitaires.
• Discuter du sérieux des défis auxquels le NARS doit faire face sur les questions des droits de propriété intellectuelle et comment ceux-ci pourraient être surmontés.

• Recommander les étapes pour atteindre une harmonie sous-régionale en bio-sécurité.

• Déterminer tout autre sujet pertinent pour l’implémentation durable des résultats du groupe de délibérations et suggérer de nouvelles étapes.

Le groupe de discussion sur l’administration et les finances devra faire des recommandations sur :

• Les mécanismes d’implémentation du programme sur la biotechnologie et la bio-sécurité particulièrement en ce qui concerne les arrangements et les structures institutionnelles aux niveaux nationaux et sous-régionaux.

• La gestion du programme sur la biotechnologie et la bio-sécurité et les implications pour la coordination et l’aide du Secrétariat.

• Alliances stratégiques avec l’IARC, le secteur privé, les laboratoires de pointe en biotechnologie et les universités de la sous-région et de l’extérieur.

• Structure administrative comprenant un comité de direction, une évaluation externe ainsi que l’évaluation et la surveillance des impacts.

• Finances et sources de financement potentielles.

• Plan d’action et délais pour l’implémentation.

Le groupe de discussion sur la sensibilisation du public et le secteur agro-industriel se chargera des actions suivantes :

• Plan d’action général pour la création d’une sensibilisation.

• Habilitation des médias pour éduquer et informer le public sur les questions de biotechnologie et bio-sécurité.

• Alliances de partenaires pour la création de sensibilisation à propos de la biotechnologie et bio-sécurité.

• Domaines potentiels en biotechnologie agricole et comment promouvoir les investissements du secteur privé dans ce secteur.

• Le circuit de distribution d’exportation des produits de l’agro-biotechnologie et comment rencontrer les défis du marché

• Faire en sorte que l’industrie locale des semences puisse créer des liens avec les sources locales et étrangères d’amélioration des semences pour les technologies et les produits.

• Déterminer tout autre point pertinent pour l’implémentation durable des résultats du groupe de délibération et suggérer les étapes suivantes.

Le groupe de travail sur les questions de durabilité (pour la fabrication des équipements et des réactifs de laboratoire) devra :

• Faire une liste de l’équipement y compris la verrerie qui peut être fabriqué localement.
• Déterminer à partir de la liste des réactifs fournis ceux qui peuvent être fabriqués localement.
• Étudier en détail les contraintes du secteur de fabrication des équipements de laboratoires scientifiques et suggérer des solutions.
• Déterminer les contraintes du secteur de fabrication des produits chimiques et proposer des moyens de les résoudre.
• Etablir comment la compétitivité sur la qualité et le prix des produits peut être garantie.
• Discuter des autres points pertinents pour l’implémentation durable des résultats du groupe de délibération et suggérer les étapes suivantes.

Budget

Ceci nécessite des apports du CORAF/WECARD et des investisseurs en développement, par ex. l’USAID, si les suggestions ci-dessus sont acceptées.

Délais pour le processus de planification

Un processus de planification d’une année est adopté comme pour l’ASARECA. Les délais des activités modifiés comme nécessaire pour convenir au CORAF/WECARD. Une tentative de planification est proposée ci-dessous.

Novembre 2002–mars 2003

- Le rapport est soumis au CORAF/WECARD et à l’USAID (1–10 novembre).
- Le CORAF/WECARD discute du budget et de la planification avec l’USAID. Il cherche les autorisations pour nommer un coordinateur et pour agir. Il nomme le groupe de travail selon les lignes directrices ou les modifications si pertinentes et il distribue le rapport au groupe de travail (1–15 décembre).
- La première réunion du groupe de travail se déroule entre le 15–20 janvier. Elle devra étudier en détail la mission et préparer un plan de travail détaillé.
- Les besoins et les documents de base en biotechnologie, bio-sécurité, droit de la propriété intellectuelle et des mesures sanitaires/phytosanitaires à commander sont discutés.
- Les documents de base (biotechnologie, bio-sécurité, droit de la propriété intellectuelle et des mesures sanitaires/phytosanitaires) sont commandés.
- Le comité des directeurs du CORAF/WECARD est informé sur les progrès de la planification du programme (15–20 mars).

Avril–Juin 2003

- Durant la deuxième réunion du groupe de travail, les documents de base en biotechnologie, bio-sécurité, droit de la propriété intellectuelle et des mesures
sanitaires/phytosanitaires seront étudiés en détail et un agenda sera développé pour le premier atelier de travail (Avril 2003).

- L’agenda de l’atelier de travail sera envoyé aux partenaires clés (directeurs du réseau) pour des commentaires (Avril 2003).
- La troisième réunion du groupe de travail aura lieu en juin 2003 et elle sera immédiatement suivie de l’atelier de travail une synthèse des résultats.
- La nécessité de commander un document de base pour le deuxième atelier de travail sur la biotechnologie et la bio-sécurité sera discuté et la commande sera faite.

Juillet–Septembre 2003

- La cinquième réunion du groupe de travail sera organisée en septembre 2003 et sera immédiatement suivie d’un atelier de travail pour synthétiser les résultats.

Octobre–Décembre 2003

- Le coordinateur initie la préparation de proposition(s) en biotechnologie/bio-sécurité (octobre 2003).
- Le co-ordinateur développe un agenda pour un atelier de travail final d’aboutissement (première semaine d’octobre 2003) en tenant compte de l’étude détaillée des groupes de travail
- L’atelier de travail final pour répondre aux questions restantes et assurer un consensus sur les priorités des proposition(s) et approches se déroulera en novembre 2003.
- Le co-ordinateur soumet le brouillon de la (des) proposition(s) pour une étude détaillée (décembre 2003)

Janvier–mars 2004

- La sixième et dernière réunion du groupe de travail permettant de finaliser la (les) propositions et discuter avec les partenaires clés se déroulera en janvier 2004.
- Le coordinateur finalise la (les) proposition(s) et la (les) soumet au secrétariat du CORAF/WECARD (février 2004).
Références

Acronymes et abréviations

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
<th>Full Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAB</td>
<td>Agence africaine de biotechnologie</td>
<td>African Agency for Biotechnology</td>
</tr>
<tr>
<td>ABSP</td>
<td>Biotechnologie agricole pour une productivité durable</td>
<td>Agricultural Biotechnology for Sustainable Productivity</td>
</tr>
<tr>
<td>ARIS</td>
<td>Instituts de pointe de recherche</td>
<td>Advanced research institutes</td>
</tr>
<tr>
<td>ARO</td>
<td>Organisation de recherche agricole</td>
<td>Agricultural research organizations</td>
</tr>
<tr>
<td>ASARECA</td>
<td>Association pour le renforcement de la recherche agricole en Afrique de l'Est et du sud</td>
<td>Association for Strengthening Agricultural Research in Eastern and Southern Africa</td>
</tr>
<tr>
<td>ATRIP</td>
<td>Programme pour le Commerce et l’Investissement en Afrique</td>
<td>Programme d’investissement et de commerce agricole - Agricultural Trade and Investment Program</td>
</tr>
<tr>
<td>BIOEARN</td>
<td>East Africa Regional Biotechnology Programme and Research Network</td>
<td>East Africa Regional Biotechnology Programme and Research Network</td>
</tr>
<tr>
<td>BNARI</td>
<td>Biotechnology and Nuclear Research Institute</td>
<td>Centre for the Application of Molecular Biology to International Agriculture</td>
</tr>
<tr>
<td>CAMBIA</td>
<td>Centre pour l’Application de la Biologie Moléculaire à l’Agriculture Internationale (CAMBIA),</td>
<td>Centre pour l’Application de la Biologie Moléculaire à l’Agriculture Internationale (CAMBIA),</td>
</tr>
<tr>
<td>CBEN</td>
<td>Centre de biotechnologie/ Ecole normale</td>
<td>Centre de biotechnologie/ Ecole normale</td>
</tr>
<tr>
<td>CERAAS</td>
<td>Centre d’étude régional pour l’amélioration de l’adaptation à la sécheresse</td>
<td>Centre d’étude régional pour l’amélioration de l’adaptation à la sécheresse</td>
</tr>
<tr>
<td>CGIAR</td>
<td>Groupe de coordination de la recherche internationale en agriculture</td>
<td>Consultative Group on International Agricultural Research</td>
</tr>
<tr>
<td>CIRAD</td>
<td>Centre de coopération internationale en recherche agronomique pour le développement</td>
<td>Centre de coopération internationale en recherche agronomique pour le développement</td>
</tr>
<tr>
<td>CNRA</td>
<td>Centre national de recherche agronomique</td>
<td>Centre national de recherche agronomique</td>
</tr>
<tr>
<td>CORAF</td>
<td>Conseil Ouest et Centre Africain pour la Recherche et le Développement Agricoles (CORAF)</td>
<td>Conseil Ouest et Centre Africain pour la Recherche et le Développement Agricoles (CORAF)</td>
</tr>
<tr>
<td>CRBP</td>
<td>Centre de recherches régionales sur bananiers et plantains</td>
<td>Centre de recherches régionales sur bananiers et plantains</td>
</tr>
<tr>
<td>CRIG</td>
<td>Institut ghanéen de recherche sur le cacao</td>
<td>Cocoa Research Institute of Ghana</td>
</tr>
<tr>
<td>CRIN</td>
<td>Institut de recherche nigérian sur le cacao (CRIN)</td>
<td>Cocoa Research Institute of Nigeria</td>
</tr>
<tr>
<td>Acronym</td>
<td>French Description</td>
<td>English Description</td>
</tr>
<tr>
<td>---------</td>
<td>--------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>CSIR</td>
<td>Conseil pour la recherche scientifique et industrielle</td>
<td>Council for Scientific and Industrial Research</td>
</tr>
<tr>
<td>CSIR–CRI</td>
<td>Conseil pour la recherche scientifique et industrielle – Institut de recherche sur les plantes cultivées</td>
<td>Crops Research Institute</td>
</tr>
<tr>
<td>CSIR–FRI</td>
<td>Conseil pour la recherche scientifique et industrielle – institut de recherche sur l’alimentation</td>
<td>Food Research Institute</td>
</tr>
<tr>
<td>CSIR–SRI</td>
<td>Conseil pour la recherche scientifique et industrielle – Institut de recherche sur les sols</td>
<td>Soil Research Institute</td>
</tr>
<tr>
<td>CSIR–STEPRI</td>
<td>Conseil pour la recherche scientifique et industrielle – Institut de recherche sur la politique des sciences et de la technologie</td>
<td>Science and Technology Policy Research Institute</td>
</tr>
<tr>
<td>CSIR–WRI</td>
<td>Conseil pour la recherche scientifique et industrielle – Institut de Recherche sur l’eau</td>
<td>Water Research Institute</td>
</tr>
<tr>
<td>DANIDA</td>
<td>Agence danoise de Développement International (Danida).</td>
<td>Danish International Development Agency</td>
</tr>
<tr>
<td>DFID</td>
<td>Département pour le développement international</td>
<td>Department for International Development</td>
</tr>
<tr>
<td>DGIS</td>
<td>Direction Générale de la Coopération Internationale (DGCI)</td>
<td>Directorate General for International Cooperation (translated)</td>
</tr>
<tr>
<td>DNA</td>
<td>Acide désoxyribonucléique (ADN)</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>ECA</td>
<td>Commission Economique pour l’Afrique</td>
<td>Economic Commission for Africa</td>
</tr>
<tr>
<td>ECOWAS</td>
<td>Communauté économique des états de l’Afrique de l’Ouest (CEDEAO)</td>
<td>Economic Community of West African States</td>
</tr>
<tr>
<td>EMBL</td>
<td>Laboratoire européen de biologie moléculaire</td>
<td>European Molecular Biology Laboratory</td>
</tr>
<tr>
<td>FAO</td>
<td>Organisation des Nations Unies pour l’alimentation et l’agriculture</td>
<td>Food and Agriculture Organization of the United Nations</td>
</tr>
<tr>
<td>GAEC</td>
<td>Commission ghanéenne de l’énergie atomique</td>
<td>Ghana Atomic Energy Commission</td>
</tr>
<tr>
<td>GMO</td>
<td>Organisme génétiquement modifié (OGM)</td>
<td>Genetically modified organism</td>
</tr>
<tr>
<td>GTZ</td>
<td>Agence Allemande de Coopération Technique</td>
<td>Deutsche Gesellschaft für Technische Zusammenarbeit</td>
</tr>
<tr>
<td>IARC</td>
<td>Centre International de Recherche Agricole</td>
<td>International agricultural research center</td>
</tr>
<tr>
<td>Acronym</td>
<td>French Name</td>
<td>English Name</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>IAR&T</td>
<td>Institut de recherche agricole et de formation</td>
<td>Institute of Agricultural Research and Training</td>
</tr>
<tr>
<td>IBS</td>
<td>Service Intermédiaire de biotechnologie</td>
<td>Intermediate Biotechnology Service</td>
</tr>
<tr>
<td>ICGEB</td>
<td>Centre International pour l’Ingénierie Génétique et Biotechnologique</td>
<td>International Centre for Genetic Engineering and Biotechnology</td>
</tr>
<tr>
<td>IDRC</td>
<td>Centre International de recherches pour le développement</td>
<td>International Development Research Centre</td>
</tr>
<tr>
<td>IFA</td>
<td>Agences Internationales de Financement</td>
<td>International funding agencies</td>
</tr>
<tr>
<td>IFPRI</td>
<td>Institut International de Recherches sur les Politiques Alimentaires</td>
<td>International Food Policy Research Institute</td>
</tr>
<tr>
<td>ILCA</td>
<td>Institut International de recherche sur le bétail pour l’Afrique</td>
<td>International Livestock Research Institute for Africa</td>
</tr>
<tr>
<td>IITA</td>
<td>Institut International d’Agriculture Tropicale</td>
<td>International Institute of Tropical Agriculture</td>
</tr>
<tr>
<td>ILRAD</td>
<td>Laboratoire international pour la recherche sur les maladies animales</td>
<td>International Laboratory for Research on Animal Diseases</td>
</tr>
<tr>
<td>ILRI</td>
<td>Institut International de recherche sur l’élevage</td>
<td>International Livestock Research Institute</td>
</tr>
<tr>
<td>INIBAP</td>
<td>Réseau international pour l’amélioration de la banane et de la banane plantain</td>
<td>International Network for the Improvement of Banana and Plantain</td>
</tr>
<tr>
<td>IRA</td>
<td>Institut de Recherche Agronomique (maintenant IRAD)</td>
<td>Institute of Agronomic Research (now IRAD)</td>
</tr>
<tr>
<td>IRAD</td>
<td>Institut de Recherche Agricole pour le Développement</td>
<td>Institute of Agricultural Research for Development</td>
</tr>
<tr>
<td>IRAD–CRBP</td>
<td>Centre de recherches régionales sur bananiers et plantains de l’IRAD</td>
<td></td>
</tr>
<tr>
<td>IRD</td>
<td>Institut de recherches pour le développement</td>
<td></td>
</tr>
<tr>
<td>IREN</td>
<td>Institut de recherche sur les énergies nouvelles</td>
<td></td>
</tr>
<tr>
<td>ISAAA</td>
<td>Service International pour l’Acquisition des Applications d’Agro-biotechnologie</td>
<td>International Service for the Acquisition of Agricultural Biotechnology Applications</td>
</tr>
<tr>
<td>ISNAR</td>
<td>Service international pour la recherche agricole nationale</td>
<td>International Service for National Agricultural Research</td>
</tr>
<tr>
<td>ISRA</td>
<td>Institut Sénégalais de recherches agricoles</td>
<td></td>
</tr>
<tr>
<td>ISRA/URCIV</td>
<td>Unité de recherches de culture en vitro de l’ISRA</td>
<td></td>
</tr>
<tr>
<td>Acronym</td>
<td>Name</td>
<td>English Translation</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>---------------------</td>
</tr>
<tr>
<td>ISRA/LNERV</td>
<td>Laboratoire national d'élevage et de recherches vétérinaires</td>
<td>Kenyan Agricultural Research Institute</td>
</tr>
<tr>
<td>KARI</td>
<td>Institut Kenyan de recherches agricoles</td>
<td>Kenyan Agricultural Research Institute</td>
</tr>
<tr>
<td>MIRCEN</td>
<td>Centre des ressources microbiennes</td>
<td>Microbiology Resources Research Center (translated)</td>
</tr>
<tr>
<td>MOFA–VSD</td>
<td>Ministère de l’alimentation et de l’agriculture – Département des services vétérinaires</td>
<td>Ministry of Food and Agriculture, Veterinary Services Department</td>
</tr>
<tr>
<td>MSU</td>
<td>Université de l’Etat du Michigan</td>
<td>Michigan State University</td>
</tr>
<tr>
<td>NACGRAB</td>
<td>Centre National pour les ressources génétiques et la biotechnologie</td>
<td>National Centre for Genetic Resources and Biotechnology</td>
</tr>
<tr>
<td>NARS</td>
<td>Systèmes nationaux de recherche agricole</td>
<td>National agricultural research systems</td>
</tr>
<tr>
<td>NAU</td>
<td>Université Nnamdi Azikiwe</td>
<td>Nnamdi Azikiwe University</td>
</tr>
<tr>
<td>NIFOR</td>
<td>Institut Nigérien de recherche sur l’Eléais</td>
<td>Nigeria Institute for Oil Palm Research</td>
</tr>
<tr>
<td>NIHORT</td>
<td>Institut national de recherche horticole</td>
<td>Nigerian Institute of Horticulture</td>
</tr>
<tr>
<td>NRCRI</td>
<td>Institut national de recherche pour la culture des racines comestibles</td>
<td>National Root Crops Research Institute</td>
</tr>
<tr>
<td>NVRI</td>
<td>Institut National de recherche vétérinaire</td>
<td>National Veterinary Research Institute</td>
</tr>
<tr>
<td>PQS</td>
<td>Service national de quarantaine des végétaux</td>
<td>Plant Quarantine Service</td>
</tr>
<tr>
<td>RCSA</td>
<td>Centre régional pour l’Afrique australe</td>
<td>Regional Centre for Southern Africa</td>
</tr>
<tr>
<td>ROTREP</td>
<td>Projet de recherche sur les racines et les tubercules comestibles</td>
<td>Root and Tuber Research Project</td>
</tr>
<tr>
<td>SADC</td>
<td>Communauté de développement de l’Afrique australe</td>
<td>Southern African Development Community</td>
</tr>
<tr>
<td>SIDA</td>
<td>Agence Suédoise de Coopération Internationale au Développement</td>
<td>Swedish International Development Agency</td>
</tr>
<tr>
<td>SIRDC</td>
<td>Centre de développement et de recherche industrielle et scientifique</td>
<td>Scientific and Industrial Research and Development Centre</td>
</tr>
<tr>
<td>UCAD</td>
<td>Université Cheik Anta Diop</td>
<td>Université Cheik Anta Diop</td>
</tr>
<tr>
<td>UNDP</td>
<td>Programme des Nations Unies pour le développement</td>
<td>United Nations Development Program</td>
</tr>
<tr>
<td>UNIJOS</td>
<td>Université de Jos</td>
<td>University of Jos</td>
</tr>
<tr>
<td>UNN</td>
<td>Université du Nigeria, Nsukka</td>
<td>University of Nigeria, Nsukka</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Name in English</td>
<td>Full Name in French</td>
</tr>
<tr>
<td>---------</td>
<td>---------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>UPOV</td>
<td>International Union for the Protection of New Varieties</td>
<td>Union internationale pour la protection des obtentions végétales</td>
</tr>
<tr>
<td>USAID</td>
<td>United States Agency for International Development</td>
<td>Agence Américaine pour le Développement International</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
<td>Département de l'Agriculture des Etats-Unis</td>
</tr>
<tr>
<td>WARDA</td>
<td>West Africa Rice Development Association</td>
<td>Association Ouest Africaine pour le Développement du Riz</td>
</tr>
<tr>
<td>WECARD</td>
<td>West African Council for Agricultural Research and Development</td>
<td>Conseil Ouest et Centre Africain pour la Recherche et le Développement Agricole</td>
</tr>
<tr>
<td>WTO</td>
<td>World Trade Organization</td>
<td>Organisation mondiale du commerce (OMC)</td>
</tr>
</tbody>
</table>
Annexes
Annexe 1. Questionnaires utilisés dans l’étude détaillée

Annexe 1a. Enquête sur l’application de la biotechnologie agricole – Institutions affiliées au NARS/CORAF.

1. Pays
2. Institution
3. Personne de contact
4. Désignation
5. Adresse
6. Télécopie
7. Téléphone
8. E-mail
9. Site Internet
10. Date
11. Liste des domaines/sujets de recherche prioritaire et stade de réalisation (cf. table annexée)
12. Outils de biotechnologie utilisés (cf. table annexée)
13. Projet de biotechnologie (cf. table annexée)
14. Disponibilité d’un laboratoire de biotechnologie fonctionnel (cocher)

<table>
<thead>
<tr>
<th>Laboratoire</th>
<th>Oui</th>
<th>Non</th>
</tr>
</thead>
<tbody>
<tr>
<td>Culture de tissus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biologie moléculaire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fermentation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15. Nombre de personnes formées en biotechnologie/bio-sécurité

<table>
<thead>
<tr>
<th>Domaine</th>
<th>Technicien</th>
<th>Diplômé de l’enseignement supérieur</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biotechnologie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio-sécurité</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16. Etat de la loi de bio-sécurité (cf. table annexée)
17. Capacité d’implémenter la loi dans l’institution
18. Cadre régional proposé pour l’application de la biotechnologie et de la bio-sécurité y compris la classification des priorités
19. Contraintes pour l’application des biotechnologies et de la bio-sécurité
20. Niveau de participation dans les activités du CORAF/WECARD (cf. table annexée)
21. Sensibilisation aux droits de la propriété intellectuelle (disponibilité d’un bureau des brevets, procédures de protection, approvisionnement en technologies brevetées, protection du germplasme, etc…)
22. Capacité de conduire des études d’évaluation des impacts des technologies
Annexe 1b. Etude détaillée des applications de l’agro-biotechnologie par les ministères gouvernementaux / agences n’effectuant pas de recherche

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Pays</td>
</tr>
<tr>
<td>2.</td>
<td>Ministère/Agence</td>
</tr>
<tr>
<td>3.</td>
<td>Personne de contact</td>
</tr>
<tr>
<td>4.</td>
<td>Désignation</td>
</tr>
<tr>
<td>5.</td>
<td>Adresse</td>
</tr>
<tr>
<td>6.</td>
<td>Télécopie</td>
</tr>
<tr>
<td>7.</td>
<td>Téléphone</td>
</tr>
<tr>
<td>8.</td>
<td>E-mail</td>
</tr>
<tr>
<td>9.</td>
<td>Site Internet</td>
</tr>
<tr>
<td>10.</td>
<td>Date</td>
</tr>
<tr>
<td>11.</td>
<td>Sensibilisation à et engagement dans l’application/la promotion de la biotechnologie</td>
</tr>
<tr>
<td>12.</td>
<td>Nature de l’engagement</td>
</tr>
<tr>
<td>13.</td>
<td>Disponibilité d’une stratégie nationale pour la biotechnologie et plan d’action</td>
</tr>
<tr>
<td>14.</td>
<td>Si oui, listes des domaines prioritaires</td>
</tr>
<tr>
<td>15.</td>
<td>Etat de la loi sur la bio-sécurité (cf. document joint)</td>
</tr>
<tr>
<td>16.</td>
<td>Capacité d’implémenter la loi</td>
</tr>
<tr>
<td>17.</td>
<td>Cadre régional proposé pour l’application de la biotechnologie et de la bio-sécurité</td>
</tr>
<tr>
<td>18.</td>
<td>Etat de l’action concernant le Protocole de Carthagène sur la bio-sécurité</td>
</tr>
<tr>
<td>19.</td>
<td>Nombre de personne dans les établissements travaillant sur les questions de la biotechnologie/bio-sécurité</td>
</tr>
<tr>
<td>20.</td>
<td>Niveau de formation du personnel travaillant dans la politique de la biologie</td>
</tr>
<tr>
<td>21.</td>
<td>Projets aidés par des donateurs en biotechnologie/bio-sécurité (indiquer le type de projet, donateur, source, niveau de soutien, nombre d’années financées, etc…)</td>
</tr>
<tr>
<td>22.</td>
<td>Contraintes générales pour la biotechnologie et la bio-sécurité</td>
</tr>
</tbody>
</table>
Annexe 1c. Etude détaillée des ONG se concentrant sur la biotechnologie agricole – environnement

1. Pays
2. Nom de l'ONG
3. Personne de contact
4. Désignation
5. Adresse
6. Télécopie
7. Téléphone
8. E-mail
9. Site Internet
10. Date
11. Nature de la sensibilisation aux biotechnologies
12. Impression sur les produits agricoles issus de la biotechnologie
13. Sensibilisation au sujet de la bio-sécurité
14. Capacité de surveillance de la bio-sécurité
15. Personnel formé en bio-sécurité disponible
16. Désir de former en bio-sécurité
17. Désir de recruter du personnel avec une formation en bio-sécurité
18. Collaboration régionale/internationale en bio-sécurité existante ou envisagée

Annexe 1d. Interview de la presse pour la création d'une sensibilisation du public

1. Pays
2. Nom du journal ou de la radio
3. Nom de la personne interrogée et position dans l'organisation
4. Adresse
5. Téléphone
6. E-mail
7. Site Internet
8. Possession actuelle de la maison de la presse (privé ou public)
9. Niveau actuel de diffusion du journal ou audience de la radio
10. Disponibilité d’un correspondant scientifique (oui ou non)
11. Si non, est-il prévu d’en recruter un dans un futur proche (oui ou non)?
12. Fréquence des reportages dans le domaine de la science en général (cocher s.v.p.)
13. Disponibilité de programme pour la communauté des fermiers (oui ou non)
14. Si oui, fréquence des reportages
15. Disponibilités des programmes sur l’environnement et la santé y compris la biodiversité
16. Comprenez-vous les termes : biotechnologie, biodiversité et bio-sécurité ?
17. Si oui, brièvement état de votre compréhension les concernant
18. Quel est la position de votre journal/radio sur les produits issus de la biotechnologie (positive, négative, indécis)
19. Donner les raisons de votre position
20. Programme actuel ou planifié pour créer une sensibilisation du public
21. Contraintes générales et suggestions pour un rôle plus efficace dans l’éducation du public concernant les biotechnologies
Tables annexées

11. Listes des priorités de la recherche

<table>
<thead>
<tr>
<th>Titre</th>
<th>Biotechnologie (cocher)</th>
<th>Participation du CORAF (cocher)</th>
<th>Réseau (faire une liste)</th>
<th>Etat de réalisation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Utilisé</td>
<td>Prévu</td>
<td>Oui</td>
<td>Non</td>
</tr>
</tbody>
</table>

Etc...

12. Utilisation des outils de la biotechnologie

<table>
<thead>
<tr>
<th>Espèce/Thème</th>
<th>Outil (cocher s.v.p.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Culture de tissus</td>
</tr>
</tbody>
</table>

Etc…
13. Projets de biotechnologie

<table>
<thead>
<tr>
<th>Espèce/thème</th>
<th>Problème étudié</th>
<th>Réseau impliqué</th>
<th>Produit issus des biotechnologies désiré</th>
<th>Stade de développement</th>
<th>Agence parrainant</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Etc…

16. Etat de la loi de bio-sécurité

<table>
<thead>
<tr>
<th>Etat de la promulgation (Oui ou Non)</th>
<th>Etat de la mise en œuvre (Oui ou Non)</th>
<th>Coordinateur (Ministère)</th>
<th>Autorité compétente (lister)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Etc…
20. Degré d'implication du CORAF/WECARD dans les activités

<table>
<thead>
<tr>
<th>Présence aux réunions</th>
<th>Réseau de recherche (Oui ou Non)</th>
<th>Enumérer les réseaux le cas échéant</th>
<th>Information régulière du CORAF (Oui ou Non)</th>
<th>Information occasionnelle du CORAF (Oui ou Non)</th>
<th>Pas de contact avec le CORAF</th>
<th>Autre contact (spécifier)</th>
</tr>
</thead>
</table>

Etc…
Annexe 2. Personnes de contact par pays pour l’étude détaillée des biotechnologies

<table>
<thead>
<tr>
<th>Personne de contact</th>
<th>Pays</th>
<th>Institution/adresse</th>
<th>Téléphone</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Roger G. Zangre</td>
<td>Burkina Faso</td>
<td>Chargé de recherche, directeur de l’agence nationale de valorisation des résultats de recherche (ANVAR), Centre national de la recherche scientifique et Technologique (CNRST), Ouagadougou.</td>
<td>226 61 02 77</td>
<td>rgzangre@fasonet.bf</td>
</tr>
<tr>
<td>Jean-Didier Song</td>
<td>Burkina Faso</td>
<td>Université de Ouagadougou UFRS/SVT, 03 BP 7021, Ouagadougou</td>
<td>03 226 33 73 70</td>
<td>zongpdo@univ-ouaga.bf</td>
</tr>
<tr>
<td>Brehima Diawara</td>
<td>Burkina Faso</td>
<td>CNRST BP 4047, Ouagadougou</td>
<td>226 31 53 21</td>
<td>dta@fasonet.bf</td>
</tr>
<tr>
<td>Dr Gnissa Konate</td>
<td>Burkina Faso</td>
<td>Chef du laboratoire de virologie INERA, BP 476, Ouagadougou 01</td>
<td>226 31920708 (Fax: 226 319206034 0271)</td>
<td>-</td>
</tr>
<tr>
<td>Zakariya Yeye</td>
<td>Burkina Faso</td>
<td>SIDWAYA (Press), 01 BP 507 Ouaga</td>
<td>01 226 30 63 07</td>
<td>redaction@fasonet.bf</td>
</tr>
<tr>
<td>Simon Zok</td>
<td>Cameroun</td>
<td>RAD Ekona, PMB 25 Buea</td>
<td>237 332 20 22/332 20 23987 67 18 (portable)</td>
<td>Zoksimon@yahoo.com</td>
</tr>
<tr>
<td>Prof. Omokolo Ndoumou Denis</td>
<td>Cameroun</td>
<td>BP 47, Yaoundé</td>
<td>237 223 12 15</td>
<td>Domokolo@ucode.uninet.cm</td>
</tr>
<tr>
<td>D.A. Mbah</td>
<td>Cameroun</td>
<td>IRAD BP 1452 Yaoundé</td>
<td>237 2224813/2235467</td>
<td>dambah@yahoo.co.uk</td>
</tr>
<tr>
<td>J.M. Negate</td>
<td>Cameroun</td>
<td>IRAD BP 2123 Yaoundé</td>
<td>237 223 35 38/2222 4813</td>
<td>jmngeve@camnet.cm</td>
</tr>
<tr>
<td>Lawrence B. Shang</td>
<td>Cameroun</td>
<td>Tadu Dairy Cooperative Society, PO Kumbo, Bui, NWP.</td>
<td>237 348 1617 Fax: 237 348 1617</td>
<td>-</td>
</tr>
<tr>
<td>Prof. Vincent Titanji</td>
<td>Cameroun</td>
<td>Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, SW Province</td>
<td>237 332 2532</td>
<td>ubuea@ucode.uninet.cm</td>
</tr>
<tr>
<td>Mary Fosi Mbantenkuh (Mrs)</td>
<td>Cameroun</td>
<td>Ministry of Environment and Forestry, Dr Abdourahmane Sangare Côte d’Ivoire Yaoundé Centre national de recherche agronomique (CNRA), 01 BP 1740 Abidjan</td>
<td>01 225 23472024/22420366</td>
<td>abous@africaonline.co.ci</td>
</tr>
<tr>
<td>Prof. N’Zi Georges Agbo</td>
<td>Côte d’Ivoire</td>
<td>University of Cocody, 22 BP 582 Abidjan</td>
<td>22225 07040741</td>
<td>agbo_nzi@hotmail.com</td>
</tr>
<tr>
<td>Prof. N’Guessan Yao Thomas</td>
<td>Côte d’Ivoire</td>
<td>Ministry of Higher Education and Research, BP V152 Abidjan</td>
<td>225 20 31 36 20</td>
<td>Nguessanik@ci.refer.org</td>
</tr>
<tr>
<td>Dr Egnankou Wadjia Mathieu</td>
<td>Côte d’Ivoire</td>
<td>SOS-Forêts (NGO), 22 BP 918 Abidjan</td>
<td>22 225 22 24 03 07</td>
<td>-</td>
</tr>
</tbody>
</table>

/ Continué
Annexe 2. (Cont.)

<table>
<thead>
<tr>
<th>Personne de contact</th>
<th>Pays</th>
<th>Institution/adresse</th>
<th>Téléphone</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vincent Kouassi</td>
<td>Côte d’Ivoire</td>
<td>Le National (Press) 16 BP 165 Abidjan 16</td>
<td>(225) 22 52 27 43 /2252 2742</td>
<td>Kavincafe@yahoo.fr</td>
</tr>
<tr>
<td>Pedia Patrick</td>
<td>Côte d’Ivoire</td>
<td>Cartagena Protocol Focal Point, Environnement et Cadre de Vie, CITAD, Tours 12ème, Abidjan</td>
<td>225 20 21 21 91</td>
<td>Pgittoral@africaonline.ci</td>
</tr>
<tr>
<td>Dr Y. Adu-Ampomah</td>
<td>Ghana</td>
<td>CRIG, PO Box 6, Tafo-Akim</td>
<td>027 609901</td>
<td>yampomah@crig.org</td>
</tr>
<tr>
<td>Eric Okoree</td>
<td>Ghana</td>
<td>Ministry of Environment and Science (MES), PO Box M233, Accra</td>
<td>233 21 666049</td>
<td>Eriokor@yahoo.com</td>
</tr>
<tr>
<td>Ransford Tetteh</td>
<td>Ghana</td>
<td>Daily Graphic, PO Box 742, Accra</td>
<td>233 21 228177</td>
<td>ranst59@hotmail.com</td>
</tr>
<tr>
<td>R. Harry Reynolds</td>
<td>Ghana</td>
<td>Ghanaian Times, PO Box 2638, Accra</td>
<td>233 21 223285 or 233 21 228282</td>
<td>newtimes@ghana.com</td>
</tr>
<tr>
<td>Affail Monney</td>
<td>Ghana</td>
<td>GBC Radio, PO Box 1633, Accra</td>
<td>233 21 221161</td>
<td>monney123irk@yahoo.co</td>
</tr>
<tr>
<td>Dr Richard Akromah</td>
<td>Ghana</td>
<td>Crop Science, KNUST, Kumasi</td>
<td>233 51 60332</td>
<td>crop-ust@africaonline.com.gh</td>
</tr>
<tr>
<td>Dr S.K. Dery</td>
<td>Ghana</td>
<td>Coconut Research Program, PO Box 245, Sekondi.</td>
<td>233 31 46366</td>
<td>cocopri@africaonline.com.gh</td>
</tr>
<tr>
<td>Dr M. Agyen-Frempong</td>
<td>Ghana</td>
<td>Veterinary Services Dept. PO Box M161, Accra</td>
<td>233 21 775777</td>
<td>vetsdept@africaonline.com.gh</td>
</tr>
<tr>
<td>Dr Bennet Larkey</td>
<td>Ghana</td>
<td>CSIR-Plant Genetic Resources Institute, PO Box 7, Bunso</td>
<td>233 27 540124 or 233 81 24124</td>
<td>tblartey@yahoo.com</td>
</tr>
<tr>
<td>Raphael F. Flagbomeh</td>
<td>Ghana</td>
<td>Green Earth Organization(NGO), PO Box AN16641, Accra</td>
<td>233 21 232762</td>
<td>greeneth@ncs.com.gh</td>
</tr>
<tr>
<td>Abraham Baffoe</td>
<td>Ghana</td>
<td>Friends of the Earth Ghana(NGO), FDE-Ghana, PMB, GPO, Accra</td>
<td>233 21 512311/512312</td>
<td>foeghana@africaonline.com.gh</td>
</tr>
<tr>
<td>Dr Elizabeth Acheampong</td>
<td>Ghana</td>
<td>Dept. of Botany, University of Ghana, Legon.</td>
<td>-</td>
<td>acheampong.elizabeth@hotmail.com</td>
</tr>
<tr>
<td>Albert Aubyn</td>
<td>Ghana</td>
<td>CSIR-Crops Research Institute, PO Box 3785, Kumasi</td>
<td>233 51 60389/60391/60425</td>
<td>criggdb@ghana.com</td>
</tr>
<tr>
<td>Dr M.S. Abdullah</td>
<td>Ghana</td>
<td>CSIR-SARI, PO Box 52, Tamale</td>
<td>233 71 2241/23251</td>
<td>msabdula@yahoo.com</td>
</tr>
</tbody>
</table>

* Continué*
Annexe 2. (Cont.)

<table>
<thead>
<tr>
<th>Personne de contact</th>
<th>Pays</th>
<th>Institution/adresse</th>
<th>Téléphone</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr J.O. Fening</td>
<td>Ghana</td>
<td>CSIR-Soil Research Institute, Academy Post Office, Kwadaso-Kumasi</td>
<td>233 51 50353/4</td>
<td>soils@africaonline.com.gh</td>
</tr>
<tr>
<td>Dr H.M. Amoatay</td>
<td>Ghana</td>
<td>Biotechnology and Nuclear Agricultural Research Institute (BINARI), Dept. of Plant and Soil Science, PO Box LG 85, Legion</td>
<td>233 21 400310</td>
<td>bnargaec@ghana.com</td>
</tr>
<tr>
<td>Dr S.K. Offei</td>
<td>Ghana</td>
<td>Dept. of Crop Science, University of Ghana, Legon</td>
<td>233 21 500629</td>
<td>skoffee@yahoo.com</td>
</tr>
<tr>
<td>Dr W.K.A. Amoa-Awu</td>
<td>Ghana</td>
<td>CSIR-Food Research Institute, PO Box M 20, Acora</td>
<td>233 21 500470</td>
<td>mhalimni@ghana.com</td>
</tr>
<tr>
<td>Dr Alamirfinn Touré</td>
<td>Mali</td>
<td>Ministère de l'équipement, de l'aménagement du territoire, de l'environnement et de l'urbanisme, Coordonnateur du Projet d'élaboration de la stratégie nationale de biodiversité, BP 2357, Bamako</td>
<td>223 23 3463 portable : 223 74 13 84</td>
<td>astrore@malinet.ml</td>
</tr>
<tr>
<td>Dr Mamadou Niang</td>
<td>Mali</td>
<td>Central Veterinary Laboratory (LCV), Division of Research and Diagnosis, BP 2295, Bamako</td>
<td>223-243344</td>
<td>dgcv@datatech.toolnet.org</td>
</tr>
<tr>
<td>Dr Bretaudeau Alhousseini</td>
<td>Mali</td>
<td>IPR/IFRA, BP 06, Koulikoro</td>
<td>-</td>
<td>bretaudeau@afribone.net.ml</td>
</tr>
<tr>
<td>Dr Oumar NiaNgo</td>
<td>Mali</td>
<td>Syngenta Representative BPE 476, Bamako</td>
<td>223 228 14 78</td>
<td>niaNgo.o@datatech.toolnet.org</td>
</tr>
<tr>
<td>Djibril Koné</td>
<td>Mali</td>
<td>ADAF/Galle (NGO), BP 3267, Bamako.</td>
<td>223 22 00 33</td>
<td>adafgalle@afribone.net.ml</td>
</tr>
<tr>
<td>Famory Jean Kammesso</td>
<td>Mali</td>
<td>“STOP SAHEL” (NGO), BP 3267, Bamako (Fax : 226 319206)</td>
<td>223 23 33 80226 319206/07/08</td>
<td>stopsahel@datatech.toolnet.org</td>
</tr>
<tr>
<td>Drabo Souleymane</td>
<td>Mali</td>
<td>L’ESSOR (Press), BP 145, Bamako</td>
<td>223 22 36 83</td>
<td>emap@malinet.ml</td>
</tr>
<tr>
<td>Dr Aboubacar Touré</td>
<td>Mali</td>
<td>IER, CRRA de Sotuba, BP 262, Bamako</td>
<td>223 24 60 08</td>
<td>acar.toure@ier.ml</td>
</tr>
<tr>
<td>Dr Damian Hedioha</td>
<td>Nigeria</td>
<td>Nigerian Environmental Studies Action Team (NEST) (NGO), No.1 Oluokun Street, Off Awolowo Avenue, Bodija, Ibadan, Nigeria.</td>
<td>234 2 8105167/8102844</td>
<td>nestng@nest.org.ng</td>
</tr>
<tr>
<td>M.B. Sarumi</td>
<td>Nigeria</td>
<td>National Center for Genetic Resources and Biotechnology, PMB 5382, Moor Plantation, Ibadan</td>
<td>234 02 2312622</td>
<td>nacgrabt@ibadan.skanno.com</td>
</tr>
</tbody>
</table>
Annexe 2. (Cont.)

<table>
<thead>
<tr>
<th>Personne de contact</th>
<th>Nationalité</th>
<th>Institution/adresse</th>
<th>Téléphone</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr (Mrs) L.H. Lombin</td>
<td>Nigeria</td>
<td>National Veterinary Research Institute, PMB 1, Vom.</td>
<td>234 73 281451 or 281453</td>
<td>nvri@bwave.net</td>
</tr>
<tr>
<td>P.O. Adebola</td>
<td>Nigeria</td>
<td>Cocoa Research Institute of Nigeria (CRIN), PMB 5244, Ibadan</td>
<td>234 2 2317545</td>
<td>detak@skannet.com</td>
</tr>
<tr>
<td>B. Adejara</td>
<td>Nigeria</td>
<td>National Horticultural Research Institute (NIHORT), Fruits Division, Ibadan</td>
<td>234 2412501</td>
<td>nhort@infoweb.abe.net</td>
</tr>
<tr>
<td>G.O. Adejare</td>
<td>Nigeria</td>
<td>Nigeria Plant Quarantine Service (NPQS), PMB 5672, Ibadan</td>
<td>234 22314183</td>
<td>siegener@skannet.com</td>
</tr>
<tr>
<td>Ada Biose</td>
<td>Nigeria</td>
<td>Features Editor, Daily Times (Press), PMB 21340, Ikeja, Agidingbi, Lagos.</td>
<td>234 8033225133</td>
<td>adabiose@yahoo.com</td>
</tr>
<tr>
<td>Azu Ishiekwene</td>
<td>Nigeria</td>
<td>Editor, The Punch (Press), 1 Kudeti Street, Onipetesi, Ikeja, Lagos</td>
<td>234 1 7748081</td>
<td>azu@the-punch.com daily@the-punch.com</td>
</tr>
<tr>
<td>(Editor)</td>
<td>Nigeria</td>
<td>Editor, The Guardian on Sunday (Press), PMB 1217, Oshodi, Lagos</td>
<td>234 1 4931796</td>
<td>www.ngguardiannews.com</td>
</tr>
<tr>
<td>Dare Olorunfemi</td>
<td>Nigeria</td>
<td>Principal Reporter, Radio Nigeria (Press), PMB 5003, Ibadan</td>
<td>234 2 2414857/2412880</td>
<td>-</td>
</tr>
<tr>
<td>Prof. G.H. Ogbadu</td>
<td>Nigeria</td>
<td>Director, Sheda Science and Technology Complex (SHESTCO), Biotechnology Advanced Laboratory, PMB 186, Garki, Abuja</td>
<td>234 9 5233916 ; 234 9 8822151 ; 234 9 5237954</td>
<td>goddyharuna@yahoo.com</td>
</tr>
<tr>
<td>Prof. C.P.E. Omaliko</td>
<td>Nigeria</td>
<td>Director/CEO, National Biotechnology Development Agency (NABDA), Plot 2284, Acra Street, Wuse, Zone 5, Abuja</td>
<td>234 9 5237954 ; 234 9 8044180456</td>
<td>info@nabda.org nabda@yahoo.com www.nabda-ng.org</td>
</tr>
<tr>
<td>Dr B.A. Ogumbode</td>
<td>Nigeria</td>
<td>Head, Tissue Culture Laboratory, Institute of Agricultural Research and Training (IAR&T), Obafemi Awolowo University, PMB 5029, Moor Plantation, Ibadan</td>
<td>234 2 2312861</td>
<td>dart@infoweb.abs.net</td>
</tr>
<tr>
<td>Dr Ivan Ingelbrecht</td>
<td>Nigeria</td>
<td>International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan</td>
<td>234 2 241 2626</td>
<td>i.ingelbrecht@cgiar.org</td>
</tr>
</tbody>
</table>

/ Continué
<table>
<thead>
<tr>
<th>Personne de contact</th>
<th>Pays</th>
<th>Institution/adresse</th>
<th>Téléphone</th>
<th>E-mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Rodomiro Ortiz</td>
<td>Nigéria</td>
<td>International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan</td>
<td>234 2 241 2626</td>
<td>R.Ortiz@cgiar.org</td>
</tr>
<tr>
<td>Dr Christian Fatokun</td>
<td>Nigéria</td>
<td>International Institute of Tropical Agriculture (IITA), PMB 5320, Oyo Road, Ibadan</td>
<td>234 2 241 2626</td>
<td>C.Fatokun@cgiar.org</td>
</tr>
<tr>
<td>Dr Yaya Thiongane</td>
<td>Sénégal</td>
<td>ISRA-LNERV, BP 2057, Dakar-hann</td>
<td>221 832 36 78</td>
<td>Thiongane@sentoo.sn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>www.isra.sn</td>
</tr>
<tr>
<td>Dr Mamady Konte</td>
<td>Sénégal</td>
<td>ISRA-LNERV, BP 2057, Dakar-Hann</td>
<td>221 832 1269</td>
<td>mkonte@sentoo.sn</td>
</tr>
<tr>
<td>Dr Bassama-Dia Yaye Kene</td>
<td>Sénégal</td>
<td>Dept. of Plant Biology, Faculty of Sciences and Techniques, University Cheikh Anta Diop, Dakar.</td>
<td>221 825 81 87</td>
<td>ykdia@ucad.sn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>www.ucad.sn</td>
</tr>
<tr>
<td>Daouda Mané</td>
<td>Sénégal</td>
<td>Le Quotidien "Le Soleil" (Press), HL01 Grand -Yoff No. 113, Dakar</td>
<td>221 827 10 69</td>
<td>dmanefr@yahoo.fr</td>
</tr>
<tr>
<td>Dr Moussa Seck</td>
<td>Sénégal</td>
<td>Director, SYSPRO/ENDA (NGO), 7 Rue Kleber, BP 3370, Dakar</td>
<td>221 8222695</td>
<td>mseck@enda.sn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>enda@enda.sn</td>
</tr>
<tr>
<td>Moussa Diouf</td>
<td>Sénégal</td>
<td>Focal Point, Biosafety, Direction de Parc, Dakar</td>
<td>221 536 7147</td>
<td>dpn@sentoo.sn</td>
</tr>
<tr>
<td>Dr Mamdou Gueye</td>
<td>Sénégal</td>
<td>MIRCEN Director, MIRCEN/Center ISRA-IRD, BP 1386, Dakar</td>
<td>221 8493321</td>
<td>Mamadou.gueye@irdad.sn</td>
</tr>
<tr>
<td>Dr Harold Roy-Macauley</td>
<td>Sénégal</td>
<td>Director, CERAAS, BP 3320, Thiles Escale, Thiles</td>
<td>221 9514993/4</td>
<td>Ceraas@sentoo.sn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>hroymac@sentoo.sn</td>
</tr>
<tr>
<td>Dr Lat Souk Tounkara</td>
<td>Sénégal</td>
<td>Chief Biotechnology Section, Institut de Technologie Alimentaire (ITA), Route des Pères Maristes, BP 2705, Dakar</td>
<td>221 8320070 or 221 6552755</td>
<td>tounkara61@hotmail.com</td>
</tr>
</tbody>
</table>

Atelier de travail sur la biotechnologie et la bio-sécurité (voir aussi le N° 3 ci-dessous) - le groupe de travail a examiné le document de base sur la biotechnologie et a développé l’agenda de l’atelier de travail autour de la discussion des priorités dans les perspectives possibles. L’agenda a été échangé avec les partenaires clés comme le réseau des directeurs de l’ASARECA avant la finalisation. Les buts de l’atelier de travail étaient de :

- Développer un consensus sur les priorités pour une recherche régionale en biotechnologie et l’adaptation ou le transfert des technologies
- Établir des relations de collaboration avec des institutions de pointe de recherche tant internationales (IARCs et universités américaines et européennes, secteur privé) que régionales.
- Développer une approche pragmatique qui combine la recherche et la formation pour améliorer la compétence de la région.
- Identifier des perspectives importantes mais limitées à court-terme pour renforcer les compétences dans la région.
- Développer des stratégies pragmatiques pour relancer le partenariat secteur public – secteur privé dans la région.

1. Document de base sur la bio-sécurité – deux documents de base ont été commandés pour fournir une base afin d’esquisser un programme dans ce domaine par :
 a) un examen du statut actuel de la bio-sécurité dans la région, soulignant les différentes options pour le but d’un programme régional de bio-sécurité et une identification des approches stratégiques pour achever chacun des buts optionnels.
 b) Une discussion au sujet des approches administratives pour un système régional de bio-sécurité comprenant les thèmes de :
 - Structures possibles d’organisation d’un système régional de bio-sécurité
 - Systèmes de gestion/administration et besoins en équipements
 - Relations entre les systèmes régionaux et les structures de réglementation nationales
 - Besoin en formations techniques en relation avec les biotechnologies
 - Projet de surveillance et systèmes d’évaluation

2. Atelier de travail en bio-sécurité – après l’examen des deux documents de base sur la bio-sécurité précités, le groupe de travail a établi deux agendas pour des ateliers régionaux. Ceci a été partagé avec les partenaires clés, particulièrement parmi les employés chargés de la politique et de la réglementation dans la région, avant la finalisation pour :
a) sensibiliser les partenaires sur les thèmes principaux de la bio-sécurité et développer un consensus pour des buts spécifiques du programme régional sur la bio-sécurité via une discussion des options selon les grandes lignes exposées dans le document de base correspondant.

b) le deuxième atelier de travail concernant les spécificités structurales et administratives qui doivent être élaborées et la mise en œuvre d’un système régional de bio-sécurité.

Le consensus qui dérive de ces deux ateliers de travail forme la base de la proposition pour un programme régional de bio-sécurité sous l’ASARECA.

3. Atelier de travail final d’aboutissement – le groupe de travail étudie en détail les résultats de l’atelier de travail biotechnologie/bio-sécurité et le second atelier de travail sur la bio-sécurité pour déterminer les questions essentielles qui restent sans réponse ou qui nécessitent une discussion ultérieure pour finaliser l’agenda et le plan pour le suivi du programme de biotechnologie et de bio-sécurité. Un atelier de travail final a été prévu pour valider les priorités du programme et mettre en œuvre les stratégies et pour couvrir un autre thème restant comme les craintes socio-économiques, les droits de propriété intellectuelle, etc…

4. Soutien/surveillance technique du coordinateur – un soutien et une surveillance technique externe seront recherchés pour aider le secrétariat de l’ASARECA, le coordinateur et le groupe de travail. En particulier, le(s) groupe(s) de soutien technique surveillera (ront) le contenu technique du travail du co-ordinateur pour le compte du secrétariat de l’ASARECA. Ses fonctions comprennent :

- une aide à la préparation de l’agenda, au choix des conférenciers, etc… pour les réunions des groupes de travail et des ateliers de travail
- une étude détaillée des attributions pour les documents de base commandés et étude détaillée des projets de documents avant leur soumission au secrétariat de l’ASARECA et au groupe de travail.
- Une participation aux réunions du groupe de travail et aux ateliers de travail.
- Une étude détaillée des résumés des rapports des réunions du groupe de travail et de l’atelier de travail avant leur soumission au secrétariat de l’ASARECA et au groupe de travail.
- Une contribution et étude en détail lors de la préparation de la proposition finale.

Budget

Un budget de 262'000 dollars US a été établi pour la mise en œuvre des réunions et les autres travaux comme précité. L’USAID, via l’ABSP, a engagé 90’000 dollars US pour la mise en œuvre de ce travail.
Planification

Ci-dessous, la planification pour mettre en œuvre le plan de travail ci-dessous est proposée par trimestre :

Sept.– Déc. 2000
- Première réunion du groupe de travail (4-8 sept.) – Etude détaillée des attributions et préparation d’un plan de travail détaillé.
- Sélectionner et engager un co-ordinateur biotechnologie.
- Préparer les attributions pour les documents de base commandés.
- Commander les documents de base (biotechnologie et bio-sécurité n°1).
- Bref comité des directeurs de l’ASARECA sur les progrès de la planification du programme (8–10 Nov.).

Jan.–Avril 2001
- Partager l’agenda de l’atelier de travail avec les partenaires clés (directeurs du réseau) pour commentaires.
- Atelier de travail Biotechnologie/bio-sécurité.
- Troisième réunion du groupe de travail suivie immédiatement d’un atelier de travail pour synthétiser les résultats de l’atelier de travail.
- Commander le deuxième document sur la bio-sécurité.

Mai–Août 2001
- Deuxième atelier de travail sur la bio-sécurité.
- Cinquième réunion du groupe de travail suivie immédiatement d’un atelier de travail pour synthétiser les résultats de l’atelier de travail.
- Le coordinateur initie la préparation de la (des) proposition(s) de biotechnologie/bio-sécurité.
- Le coordinateur développe un agenda pour l’atelier de travail final d’aboutissement en tenant compte des résultats de l’étude détaillée du groupe de travail.
- Atelier de travail final pour répondre aux thèmes restants et assurer le consensus sur les priorités et les approches de la (des) proposition(s).
Sept.–Déc. 2001
• Le coordinateur soumet une esquisse pour une ou plusieurs proposition(s) au groupe de travail pour une étude détaillée.
• Sixième et dernière réunion du groupe de travail pour finaliser la (les) proposition(s) et discuter avec les partenaires clés.
• Le coordinateur finalise la (les) proposition(s) au secrétariat de l’ASARECA.

Evolution du projet et recommandations de l’atelier de travail

Avec comme objectif de planifier la définition des processus/attributions du groupe de travail qui comprennent la commande de document sur la biotechnologie/biosécurité, le groupe de travail a prévu une réunion des partenaires pour juin 2002 à Nairobi. Le document de base sur les options de la biotechnologie pour la sous-région énumère les plantes cultivées prioritaires et leurs problèmes ainsi que les technologies disponibles pour lutter contre ces problèmes et les deux documents concernant la bio-sécurité sur l’état actuel de la bio-sécurité de la région avec des propositions pour la structure régionale de bio-sécurité ont été donnés au groupe de travail pour qu’ils les étudient et fassent connaître leur vision à la réunion des partenaires. Le retour d’information du groupe de travail au consultant du rapport sur la biotechnologie indique que:
• Il a été ressenti que la portée du rapport était trop étroite dans le sens qu’elle se concentrait principalement sur les plantes transgéniques.
• Il a ignoré totalement le bétail.
• Le développement de la compétence pour les plantes cultivées transgéniques devait être pris en main avec la construction de la compétence pour la gestion de la bio-sécurité.

Le groupe de travail a suggéré que les résultats attendus pour la biotechnologie soit:
• La biotechnologie doit répondre aux besoins, perspectives et problèmes agricoles disponibles. Les activités à entreprendre comprennent :
 - déterminer les besoins et les problèmes
 - établir des centres d’excellence virtuels sur des problèmes particuliers
 - développer ou adapter les interventions des biotechnologies.
• Une dissémination efficace des biotechnologies en fonction des demandes aux secteurs publics et privés doit être assurée. Il est nécessaire de faciliter le transfert de technologie.
• Il faut augmenter la capacité d’intégrer la recherche en biotechnologie et le développement dans la sous-région.
• Un système efficace de planification, de surveillance et d’évaluation doit être mis en place.
Bio-sécurité

De loin, la recommandation la plus importante est celle concernant la bio-sécurité. Le rapport du consultant soutenu par le groupe de travail a été soumis lors de la réunion des partenaires. Les composants d’une réglementation en bio-sécurité ont été établis comme suit:

- Législation (nationale) couvrant les thèmes comme les autorisations nécessaires, les demandes, le cadre et les responsabilités, l’étiquetage, les exclusions, entre autres.
- Réglementations couvrant les procédures détaillées et les lignes directrices.

- Coordonner une formation courante/générale
- Coordonner la formation des scientifiques
- Fournir une plate-forme pour le contrôle de la sécurité de l’alimentation humaine et animale pour la technologie GM
- Coordonner la recherche en bio-sécurité au niveau sous-régional
- Interagir avec les protagonistes internationaux
- Trouver des fonds pour les projets.

Le rapport du consultant suggère l’établissement d’un projet de bio-sécurité à l’intérieur du Programme de Biotechnologie et de Bio-sécurité. Le but de ce projet est d’établir un cadre sous-régional de bio-sécurité efficace et bien organisé. Les résultats du projet de bio-sécurité proposé sont:

- L’établissement d’une base de connaissances sous-régionale pour aider la prise de décision en bio-sécurité. Les indicateurs seront la formation, lien et partenariat et études détaillée accélérée.
- Modèle sous-régional pour conduire l’établissement d’études détaillées. Les indicateurs sont l’adoption volontaire de standards établis pour l’étude détaillée des applications. Aussi les considérations de bio-sécurité et de droits de propriété intellectuelle doivent être comprises dans toutes les propositions de projets identifiés par le groupe de travail biotechnologie.

Discussion du groupe de travail

Après avoir reçu les rapports du groupe de travail en sessions plénières, les partenaires se sont divisés en groupes de discussion pour délibérer sur les différents composants en fonction des attributions données. Une partie du premier jour et la totalité des deuxième et troisième jours ont été utilisés pour les discussions des groupes et la présentation des rapports. Les attributions des groupes de discussion étaient comme indiquées ci-dessous. Il a été demandé aux groupes de discussion Plantes cultivées et forestières, Bétail et Microbiologie de faire des recommandations concernant:

- Rapport dans le choix des priorités pour le programme Biotechnologie
- Esquisse d’un cadre Biotechnologie – résultats, activités, indicateurs de succès, entre autres
- Liste des difficultés rencontrées par les espèces et les interventions proposées par le groupe de travail
- Agenda de l’ASARECA pour la biotechnologie des espèces – présélection de cinq problèmes pour les espèces et lacunes de recherche.
- Construction des capacités nécessaires et compétences disponibles
- Projets pilotes de recherche possible
- Propositions pour un lien effectif avec les groupes de partenaires.
- Suggestion des prochaines étapes.

Les groupes de discussion Politique, Bio-sécurité et Propriété intellectuelle devaient faire des recommandations sur:

- Présentation des biotechnologies et des résultats par le consultant ; commentaires sur les buts des activités en biotechnologie
- Projet de cadre de bio-sécurité
• Défis auxquels les pays membres de l’ASARECA doivent faire face en matière de protection intellectuelle et rôle de l’ASARECA pour répondre aux défis.
• Agenda de l’ASARECA pour la bio-sécurité, la protection intellectuelle et la politique des biotechnologies.
• Liens avec les groupes de partenaires

Le dernier groupe de discussion traitant de l’administration et de la gestion du programme Biotechnologie et Bio-sécurité de l’ASARECA devait faire des recommandations sur:
• Mécanismes pour mettre en œuvre le programme Biotechnologie et Bio-sécurité de l’ASARECA : arrangements institutionnels/structures au niveau national et régional.
• Alliance stratégique avec l’IARC, le secteur privé, l’ARI et les universités.
• Structure administrative : comité de direction, évaluation externe et évaluation des impacts
• Finance : sources possibles de financement
• Plan d’action et délais pour la mise en œuvre.

Les résultats des groupes de discussions ont été soumis au groupe de travail conjointement avec le rapport sur le deuxième atelier de travail bio-sécurité afin de préparer pour la réunion finale d’aboutissement comme indiqué dans les lignes directrices du processus de planification ci-dessus.